TeX - LaTeX Asked by Daniel Webb on March 10, 2021
I’ve been having lots of issues lately trying to keep tables and figures stay within the sections and the order I want them in. I have 2 tables formatted in 2 separate sub-sub-sections. I try separating them but the space is enormously huge when I use a FloatBarrier. please help lol.
documentclass[12 point, titlepage]{article}
usepackage[hdivide={1in,*,1in}, vdivide={1in,*,1in}]{geometry}
usepackage{amsmath, graphicx, longtable, acronym, verbatim, subfigure, tikz, listings, color, float}
usepackage[section]{placeins}
lstdefinestyle{customc}{belowcaptionskip=1baselineskip,breaklines=true,frame=L,xleftmargin=parindent,language=C,showstringspaces=false,
basicstyle=footnotesizettfamily,keywordstyle=bfseriescolor{green!40!black},commentstyle=itshapecolor{purple!40!black},identifierstyle=color{blue},stringstyle=color{orange},}lstdefinestyle{customasm}{belowcaptionskip=1baselineskip,frame=L,xleftmargin=parindent,language=[x86masm]Assembler,basicstyle=footnotesizettfamily,commentstyle=itshapecolor{purple!40!black},
}lstset{ basicstyle=scriptsize,numbers=left,numberstyle=footnotesize,stepnumber=1,numbersep=10pt,backgroundcolor=color{white},frame=single,captionpos=b,breaklines=true,breakatwhitespace=false
}
begin{document}
author{ Daniel Webb
Electrical Engineering-UNL}
date{02//2020}
title{ECEN 347 Lab 2
Date: 3/01/2021 }
maketitle
pagebreak
section{Abstract}
section{Introduction}
section{Experiment}
subsection{Transistor Operation Design (Transistor Bias)}
Design a bias circuit in Fig. for operation in (cutoff, triode, saturation) and note which one has lowest power consumption given $R_1$ =100 ohms, $R_2=1000 ohms$
begin{figure}[H]
centering
includegraphics[scale=0.7]{MOSFET CIRCUIT.PNG}
caption{Mosfet Circuit }
label{fig}
end{figure}
1) Place the LED in series with R, $V_{DD}$= 5 V while varying $V_{GS}$ from 0 V to 5 V. Record when the LED starts turning on; this will determine when the transistor is in the on state for overcoming Gate Source voltage required.
2) Remove the LED and increase $V_{GS}$ observed by 1 V. Step up $V_{DD}$ from 0V : 8V in 1V increments. Measure $I_{DS}$ and $V_{DS}$ for each step value and calculate $R_{DS}$ from these values and Power found by P = power dissipated from transistor ($P_{R_{DS}}$) + drain connected resistor ($P_R$)
subsection{Transistor Inverter, Switching operation}
subsection{Propogation Delay of Transistor Inverter}
subsection{Logic Gates}
section{Results}
subsection{Transistor Operation Design (Transistor Bias)}
%Summarize the component selection R and operation set up (VGS,VGS(th),VDD,and P) of your design. For each resistor, include VGS(th),VGS and one table with the values of ID,VDS,RDS, P , and PR and for RDS each value of VDD(Numeral 2).
%Operation setup ($V_{GS}$,$V_{GS}$(th),$V_{DD}$,and P) of design }
subsubsection{Part2: 100 ohm R}
1)$V_{GS}=$ that turns on LED //
2)Adjusted $V_{GS}= $ //
begin{table}[]
centering
begin{tabular}{|c|c|c|c|c|c|c|c|}
hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$
hlinehline
0 & & & & & & &
1 & & & & & & &
2 & & & & & & &
3 & & & & & & &
4 & & & & & & &
5 & & & & & & &
6 & & & & & & &
7 & & & & & & &
8 & & & & & & &
hline
end{tabular}
caption{100 ohm R selection }
label{tab: table name}
end{table}
FloatBarrier
subsubsection{Part2: 1000 Ohm R}
1)$V_{GS}=$ that turns on LED //
2)Adjusted $V_{GS}= $ //
begin{table}[]
centering
begin{tabular}{|c|c|c|c|c|c|c|c|}
hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$
hlinehline
0 & & & & & & &
1 & & & & & & &
2 & & & & & & &
3 & & & & & & &
4 & & & & & & &
5 & & & & & & &
6 & & & & & & &
7 & & & & & & &
8 & & & & & & &
hline
end{tabular}
caption{1000 ohm R selection }
label{tab: table name}
end{table}
section{Conclusion}
end{document}
I adjusted the markup in a few places to arrive at
Basically you should not worry about the float placement until the text is done and then at the end you could add clearpage
if needed before a section heading to flush any floats that are floating too far.
% no 12 point option documentclass[12 point, titlepage]{article}
documentclass[12pt, titlepage]{article}
usepackage[hdivide={1in,*,1in}, vdivide={1in,*,1in}]{geometry}
usepackage{amsmath, graphicx, longtable, acronym, verbatim, subfigure, tikz, listings, color, float}
%usepackage[section]{placeins}
lstdefinestyle{customc}{belowcaptionskip=1baselineskip,breaklines=true,frame=L,xleftmargin=parindent,language=C,showstringspaces=false,
basicstyle=footnotesizettfamily,keywordstyle=bfseriescolor{green!40!black},commentstyle=itshapecolor{purple!40!black},identifierstyle=color{blue},stringstyle=color{orange},}lstdefinestyle{customasm}{belowcaptionskip=1baselineskip,frame=L,xleftmargin=parindent,language=[x86masm]Assembler,basicstyle=footnotesizettfamily,commentstyle=itshapecolor{purple!40!black},
}lstset{ basicstyle=scriptsize,numbers=left,numberstyle=footnotesize,stepnumber=1,numbersep=10pt,backgroundcolor=color{white},frame=single,captionpos=b,breaklines=true,breakatwhitespace=false
}
begin{document}
author{ Daniel Webb
Electrical Engineering-UNL}
date{02//2020}
title{ECEN 347 Lab 2
Date: 3/01/2021 }
maketitle
section{Abstract}
section{Introduction}
section{Experiment}
subsection{Transistor Operation Design (Transistor Bias)}
Design a bias circuit in Fig. for operation in (cutoff, triode, saturation) and note which one has lowest power consumption given $R_1$ =100 ohms, $R_2=1000 ohms$
begin{figure}[htp]
centering
includegraphics[scale=0.7]{example-image}
caption{Mosfet Circuit }
label{fig}
end{figure}
begin{enumerate}
item Place the LED in series with R,
$V_{DD} = 5mathrm{V}$ while varying $V_{GS}$ from 0 V to 5 V. Record when the LED starts turning on; this will determine when the transistor is in the on state for overcoming Gate Source voltage required.
item Remove the LED and increase $V_{GS}$ observed by 1 V. Step up $V_{DD}$ from 0V : 8V in 1V increments. Measure $I_{DS}$ and $V_{DS}$ for each step value and calculate $R_{DS}$ from these values and Power found by P = power dissipated from transistor ($P_{R_{DS}}$) + drain connected resistor ($P_R$)
end{enumerate}
subsection{Transistor Inverter, Switching operation}
subsection{Propogation Delay of Transistor Inverter}
subsection{Logic Gates}
section{Results}
subsection{Transistor Operation Design (Transistor Bias)}
%Summarize the component selection R and operation set up (VGS,VGS(th),VDD,and P) of your design. For each resistor, include VGS(th),VGS and one table with the values of ID,VDS,RDS, P , and PR and for RDS each value of VDD(Numeral 2).
%Operation setup ($V_{GS}$,$V_{GS}$(th),$V_{DD}$,and P) of design }
subsubsection{Part2: 100 ohm R}
begin{enumerate}
item $V_{GS}=$ that turns on LED
item Adjusted $V_{GS}= $
end{enumerate}
begin{table}[htp]
centering
begin{tabular}{|c|c|c|c|c|c|c|c|}
hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$
hlinehline
0 & & & & & & &
1 & & & & & & &
2 & & & & & & &
3 & & & & & & &
4 & & & & & & &
5 & & & & & & &
6 & & & & & & &
7 & & & & & & &
8 & & & & & & &
hline
end{tabular}
caption{100 ohm R selection }
label{tab: table name}
end{table}
subsubsection{Part2: 1000 Ohm R}
begin{enumerate}
item %V_{GS}=$ that turns on LED
item Adjusted $V_{GS}= $
end{enumerate}
begin{table}[htp]
centering
begin{tabular}{|c|c|c|c|c|c|c|c|}
hline
$V_{GS(th)}$& $V_{GS}$ & $V_{DD}$ & $I_{DS}$ & $V_{DS}$ & $R_{DS}$ & P & $P_R$
hlinehline
0 & & & & & & &
1 & & & & & & &
2 & & & & & & &
3 & & & & & & &
4 & & & & & & &
5 & & & & & & &
6 & & & & & & &
7 & & & & & & &
8 & & & & & & &
hline
end{tabular}
caption{1000 ohm R selection }
label{tab: table namez}
end{table}
section{Conclusion}
end{document}
Answered by David Carlisle on March 10, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP