Stack Overflow Asked by Mohan on January 6, 2021
I am working on a deep learning architecture with training data something like below
X shape is (80, 260,380,3,1)
y shape is (80, 260,380,1)
input_shape1 = (None, 260,380,3,1)
The model:
model = Sequential()
model.add(TimeDistributed(Conv2D(filters=6, kernel_size=(3,3), strides=(1,1), activation ="relu", padding = "same", input_shape=input_shape1)))
model.add(TimeDistributed(MaxPooling2D(pool_size=(3,3), strides=(1,1), padding = "same")))
model.add(TimeDistributed(Flatten()))
model.add(TimeDistributed(Dense(units=380, activation = "relu")))
model.add(Bidirectional(SimpleRNN(380, activation = "relu", return_sequences=True)))
model.add(TimeDistributed(Dense(380, activation ="relu")))
model.add(TimeDistributed(Dense(380, activation ="sigmoid")))
model.compile(loss = "binary_crossentropy", optimizer = "adam")
I am getting output with shape (1,260)
I am looking for (1,260,380)
I am not sure on the RNN part, please check and advise
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP