Stack Overflow Asked by Borun Chowdhury on November 5, 2020
I have a sparse categorical tensor that I want to convert into a one-hot encoded representation. I can get it to work in eager mode but not in graph mode. I do not understand what is going on.
Specifically, lets say I have a sparse classification
y=tf.constant(np.random.choice([0,1,2],2).reshape(-1,1))
that I want to convert into one hot encoded representation. I defined a function
def tmp(y):
return tf.keras.utils.to_categorical(y)
and it works as expected. However, if I wrap the function
@tf.function
def tmp(y):
return tf.keras.utils.to_categorical(y)
then I get the exception
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-23-bb4411a7c6f7> in <module>
----> 1 tmp(y)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
578 xla_context.Exit()
579 else:
--> 580 result = self._call(*args, **kwds)
581
582 if tracing_count == self._get_tracing_count():
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
625 # This is the first call of __call__, so we have to initialize.
626 initializers = []
--> 627 self._initialize(args, kwds, add_initializers_to=initializers)
628 finally:
629 # At this point we know that the initialization is complete (or less
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
504 self._concrete_stateful_fn = (
505 self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access
--> 506 *args, **kwds))
507
508 def invalid_creator_scope(*unused_args, **unused_kwds):
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
2444 args, kwargs = None, None
2445 with self._lock:
-> 2446 graph_function, _, _ = self._maybe_define_function(args, kwargs)
2447 return graph_function
2448
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
2775
2776 self._function_cache.missed.add(call_context_key)
-> 2777 graph_function = self._create_graph_function(args, kwargs)
2778 self._function_cache.primary[cache_key] = graph_function
2779 return graph_function, args, kwargs
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
2665 arg_names=arg_names,
2666 override_flat_arg_shapes=override_flat_arg_shapes,
-> 2667 capture_by_value=self._capture_by_value),
2668 self._function_attributes,
2669 # Tell the ConcreteFunction to clean up its graph once it goes out of
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
979 _, original_func = tf_decorator.unwrap(python_func)
980
--> 981 func_outputs = python_func(*func_args, **func_kwargs)
982
983 # invariant: `func_outputs` contains only Tensors, CompositeTensors,
/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
439 # __wrapped__ allows AutoGraph to swap in a converted function. We give
440 # the function a weak reference to itself to avoid a reference cycle.
--> 441 return weak_wrapped_fn().__wrapped__(*args, **kwds)
442 weak_wrapped_fn = weakref.ref(wrapped_fn)
443
/usr/local/lib/python3.6/dist-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
966 except Exception as e: # pylint:disable=broad-except
967 if hasattr(e, "ag_error_metadata"):
--> 968 raise e.ag_error_metadata.to_exception(e)
969 else:
970 raise
TypeError: in user code:
<ipython-input-11-4e328cd877a4>:3 tmp *
return tf.keras.utils.to_categorical(y)
/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/utils/np_utils.py:49 to_categorical **
y = np.array(y, dtype='int')
TypeError: __array__() takes 1 positional argument but 2 were given
On the face of it, it looks like a numpy error but I verified that my numpy installation takes two arguments so what is going wrong?
More generally what is the way to convert a spares categorical tensor to one hot encoded one in graph mode?
You can use tf.one_hot
instead of tf.keras.utils.to_categorical
as a workaround. It working as expected both in eager and graph mode.
Please refer complete code as shown below
import tensorflow as tf
print(tf.__version__)
import numpy as np
y=tf.constant(np.random.choice([0,1,2],[2,2]))
print(y)
Output:
2.3.0
tf.Tensor(
[[1 0]
[2 1]], shape=(2, 2), dtype=int64)
Eager Mode with tf.keras.utils.to_categorical
def tmp(y):
return tf.keras.utils.to_categorical(y)
tmp(y)
Output:
array([[[0., 1., 0.],
[1., 0., 0.]],
[[0., 0., 1.],
[0., 1., 0.]]], dtype=float32)
Eager Mode with tf.one_hot
def tmp(y):
return tf.one_hot(y,3)
tmp(y)
Output:
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[0., 1., 0.],
[1., 0., 0.]],
[[0., 0., 1.],
[0., 1., 0.]]], dtype=float32)>
Graph Mode with tf.one_hot
@tf.function
def tmp(y):
return tf.one_hot(y,3)
tmp(y)
Output:
<tf.Tensor: shape=(2, 2, 3), dtype=float32, numpy=
array([[[0., 1., 0.],
[1., 0., 0.]],
[[0., 0., 1.],
[0., 1., 0.]]], dtype=float32)>
Answered by TFer2 on November 5, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP