Stack Overflow Asked by Jonathon on January 21, 2021
I’m trying to wrap my head around this whole thing and I can’t seem to figure it out. Basically, I have a list of ints. Adding up those int values equals 15. I want to split up a list into 2 parts, but at the same time, making each list as close as possible to each other in total sum. Sorry if I’m not explaining this good.
Example:
list = [4,1,8,6]
I want to achieve something like this:
list = [[8, 1][6,4]]
adding the first list up equals 9, and the other equals 10. That’s perfect for what I want as they are as close as possible.
What I have now:
my_list = [4,1,8,6]
total_list_sum = 15
def divide_chunks(l, n):
# looping till length l
for i in range(0, len(l), n):
yield l[i:i + n]
n = 2
x = list(divide_chunks(my_list, n))
print (x)
But, that just splits it up into 2 parts.
Any help would be appreciated!
You could use a recursive algorithm and "brute force" partitioning of the list. Starting with a target difference of zero and progressively increasing your tolerance to the difference between the two lists:
def sumSplit(left,right=[],difference=0):
sumLeft,sumRight = sum(left),sum(right)
# stop recursion if left is smaller than right
if sumLeft<sumRight or len(left)<len(right): return
# return a solution if sums match the tolerance target
if sumLeft-sumRight == difference:
return left, right, difference
# recurse, brutally attempting to move each item to the right
for i,value in enumerate(left):
solution = sumSplit(left[:i]+left[i+1:],right+[value], difference)
if solution: return solution
if right or difference > 0: return
# allow for imperfect split (i.e. larger difference) ...
for targetDiff in range(1, sumLeft-min(left)+1):
solution = sumSplit(left, right, targetDiff)
if solution: return solution
# sumSplit returns the two lists and the difference between their sums
print(sumSplit([4,1,8,6])) # ([1, 8], [4, 6], 1)
print(sumSplit([5,3,2,2,2,1])) # ([2, 2, 2, 1], [5, 3], 1)
print(sumSplit([1,2,3,4,6])) # ([1, 3, 4], [2, 6], 0)
Correct answer by Alain T. on January 21, 2021
Use itertools.combinations
(details here). First let's define some functions:
def difference(sublist1, sublist2):
return abs(sum(sublist1) - sum(sublist2))
def complement(sublist, my_list):
complement = my_list[:]
for x in sublist:
complement.remove(x)
return complement
The function difference
calculates the "distance" between lists, i.e, how similar the sums of the two lists are. complement
returns the elements of my_list
that are not in sublist
.
Finally, what you are looking for:
def divide(my_list):
lower_difference = sum(my_list) + 1
for i in range(1, int(len(my_list)/2)+1):
for partition in combinations(my_list, i):
partition = list(partition)
remainder = complement(partition, my_list)
diff = difference(partition, remainder)
if diff < lower_difference:
lower_difference = diff
solution = [partition, remainder]
return solution
test1 = [4,1,8,6]
print(divide(test1)) #[[4, 6], [1, 8]]
test2 = [5,3,2,2,2,1]
print(divide(test2)) #[[5, 3], [2, 2, 2, 1]]
Basically, it tries with every possible division of sublists and returns the one with the minimum "distance".
If you want to make it a a little bit faster you could return the first combination whose difference is 0.
Answered by Pablo C on January 21, 2021
I think what you're looking for is a hill climbing algorithm. I'm not sure this will cover all cases but at least works for your example. I'll update this if I think of a counter example or something.
Let's call your list of numbers vals
.
vals.sort(reverse=true)
a,b=[],[]
for v in vals:
if sum(a)<sum(b):
a.append(v)
else:
b.append(v)
Answered by gph on January 21, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP