Stack Overflow Asked on December 27, 2021
Task Description
I have a bunch of DataFrames I read in from sheets in an xlsx file. Is it possible to merge df
into df2
and create a column in df2
which is the sheet name stored in the loop.
I read the df
in as follows:
for idx, sheet_name in enumerate(excel_file.sheet_names):
df = excel_file.parse(sheet_name)
# do some stuff
I wish to merge df
with df2
within this loop.
If we just do it for an individual sheet, for example, revenue
, is it possible to create df3
?
df
Date AR AU GB US
1983-03-31 0.001 0.053206 0.001 0.160159
1983-04-30 0.001 0.053206 0.001 0.160159
1983-05-31 0.001 0.053206 0.001 0.160159
df2
Date. a ... z loc
1983-03-31 AR
1983-03-31 AU
1983-03-31 GB
1983-03-31 US
1983-04-30 AR
1983-04-30 AU
1983-04-30 GB
1983-04-30 US
1983-05-31 AR
1983-05-31 AU
1983-05-31 GB
1983-05-31 US
Desired DataFrame
df3
Date. a ... z loc revenue
1983-03-31 AR 0.001
1983-03-31 AU 0.053206
1983-03-31 GB 0.001
1983-03-31 US 0.160159
1983-04-30 AR 0.001
1983-04-30 AU 0.053206
1983-04-30 GB 0.001
1983-04-30 US 0.160159
1983-05-31 AR 0.001
1983-05-31 AU 0.053206
1983-05-31 GB 0.001
1983-05-31 US 0.160159
Best way out, melt df
and merge with df
.
df3= print(df2.merge(pd.melt(df, id_vars=['Date'],
var_name='loc', value_name='Revenue'),how='left', on=['Date','loc']))
print(df3)
Date loc Revenue
0 1983-03-31 AR 0.001000
1 1983-03-31 AU 0.053206
2 1983-03-31 GB 0.001000
3 1983-03-31 US 0.160159
4 1983-04-30 AR 0.001000
5 1983-04-30 AU 0.053206
6 1983-04-30 GB 0.001000
7 1983-04-30 US 0.160159
8 1983-05-31 AR 0.001000
9 1983-05-31 AU 0.053206
10 1983-05-31 GB 0.001000
11 1983-05-31 US 0.160159
Answered by wwnde on December 27, 2021
IIUC, DataFrame.lookup
df3 = df2.copy()
df3['revenue'] = df.set_index('Date').lookup(df2['Date'], df2['loc'])
print(df3)
If there are missing value in df
for any 'Date' , 'loc'
in df2:
df3 = (df.melt('Date', var_name = 'loc', value_name='revenue')
.merge(df2, on=['Date' , 'loc'], how='right'))
print(df3)
Output
Date loc revenue
0 1983-03-31 AR 0.001000
1 1983-03-31 AU 0.053206
2 1983-03-31 GB 0.001000
3 1983-03-31 US 0.160159
4 1983-04-30 AR 0.001000
5 1983-04-30 AU 0.053206
6 1983-04-30 GB 0.001000
7 1983-04-30 US 0.160159
8 1983-05-31 AR 0.001000
9 1983-05-31 AU 0.053206
10 1983-05-31 GB 0.001000
11 1983-05-31 US 0.160159
Answered by ansev on December 27, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP