Stack Overflow Asked on November 22, 2021
I have the following code running inside a Jupyter notebook:
# Visualize training history
from keras.models import Sequential
from keras.layers import Dense
import matplotlib.pyplot as plt
import numpy
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
# load pima indians dataset
dataset = numpy.loadtxt("pima-indians-diabetes.csv", delimiter=",")
# split into input (X) and output (Y) variables
X = dataset[:,0:8]
Y = dataset[:,8]
# create model
model = Sequential()
model.add(Dense(12, input_dim=8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(8, kernel_initializer='uniform', activation='relu'))
model.add(Dense(1, kernel_initializer='uniform', activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# Fit the model
history = model.fit(X, Y, validation_split=0.33, epochs=150, batch_size=10, verbose=0)
# list all data in history
print(history.history.keys())
# summarize history for accuracy
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
# summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
The code collects epochs history, then displays the progress history.
Q: How can I make the chart change while training so I can see the changes in real time?
There is livelossplot Python package for live training loss plots in Jupyter Notebook for Keras (disclaimer: I am the author).
from livelossplot import PlotLossesKeras
model.fit(X_train, Y_train,
epochs=10,
validation_data=(X_test, Y_test),
callbacks=[PlotLossesKeras()],
verbose=0)
To see how does it work, look at its source, especially this file: https://github.com/stared/livelossplot/blob/master/livelossplot/outputs/matplotlib_plot.py (from IPython.display import clear_output
and clear_output(wait=True)
).
A fair disclaimer: it does interfere with Keras output.
Answered by Piotr Migdal on November 22, 2021
Keras comes with a callback for TensorBoard
.
You can easily add this behaviour to your model and then just run tensorboard on top of the logging data.
callbacks = [TensorBoard(log_dir='./logs')]
result = model.fit(X, Y, ..., callbacks=callbacks)
And then on your shell:
tensorboard --logdir=/logs
If you need it in your notebook, you can also write your own callback to get metrics while training:
class LogCallback(Callback):
def on_epoch_end(self, epoch, logs=None):
print(logs["train_accuracy"])
This would get the training accuracy at the end of the current epoch and print it. There's some good documentation around it on the official keras site.
Answered by Thomas Jungblut on November 22, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP