Quantum Computing Asked on January 3, 2022

Is it possible to perform an operation on two qubits with initial states as follows:

$$q_1: 1/sqrt(2)(|0rangle + exp(0.a_1a_2a_3)|1rangle)$$

$$q_2: 1/sqrt(2)(|0rangle + |1rangle)$$

To resultant state:-

$$q_1: 1/sqrt(2)(|0rangle + exp(0.a_1a_2)|1rangle)$$

$$q_2: 1/sqrt(2)(|0rangle + exp(0.a_3)|1rangle)$$

Without knowing the value of $a_3$. Where $a_1,a_2,a_3 ∈ [0, 1].$

The idea is to shift the phase of $q_1$ by $exp(-0.00a_3)$ and $q_2$ by $exp(0.a_3)$ with the unitary operation not being aware of the value of $a_3$.

No, it's not possible to extract digits of the phase like that. It would violate the Holevo bound. In general there's no way to "amplify" single small phase differences into big phase differences, because of linearity.

Answered by Craig Gidney on January 3, 2022

Get help from others!

Recent Answers

- Joshua Engel on Why fry rice before boiling?
- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Peter Machado on Why fry rice before boiling?
- Jon Church on Why fry rice before boiling?

Recent Questions

- How can I transform graph image into a tikzpicture LaTeX code?
- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP