Quantum Computing Asked by Bertolino on October 19, 2020
In this paper, in Appendix B.1 (Grover’s Search Algorithm and Grover Operator G), it does a change of coefficients, such as what is done for the Bloch Sphere, but for a many qubits system using only two vectors.
Firstly, it separates the uniform superposition
$$|{psi}rangle = frac{1}{sqrt{N}}sum_{x=0}^{N-1}{|xrangle} $$
in two desired states (based on Oracle “responses”)
$$ |psirangle = sqrt{frac{M}{N}}|chirangle + sqrt{frac{N-M}{N}}|xirangle$$
with
$$
|chirangle = frac{1}{sqrt{M}}sum_{x,f(x)=1}{|xrangle} quad,quad
|xirangle = frac{1}{sqrt{N-M}}sum_{x,f(x)=0}{|xrangle}
$$
where $N=2^n$ (with n being the number of qubits) and $M$ is the number of Maximal Cliques, in this case the number of states which $f(x)=1$, the states which would be flipped by the Oracle.
Then it changes the coefficients of each summation to trigonometric ones as follows
$$ |psirangle = sin{frac{theta}{2}}|chirangle + cos{frac{theta}{2}}|xirangle$$
I could easily see that this transformation is correct and preserves $langlepsi|psirangle=1$, but I got confused on how to deduce it for a many qubits system and how to achieve a similar structure after applying the Grover Operator G R times as stated by the paper in the following equation
$$ G^R|psirangle = sin{frac{(2R+1)theta}{2}}|chirangle + cos{frac{(2R+1)theta}{2}}|xirangle$$
We know that the Initial state $|psirangle$ can be represented as $sinfrac{theta}{2}|chirangle + cosfrac{theta}{2}|xirangle$.
We can prove the result $G^R|psirangle = sinfrac{(2R+1)theta}{2}|chirangle + cosfrac{(2R+1)theta}{2}|xirangle$ by Induction
Base Case
When $R=0$, $G^R=G^0=I$ and $2R+1=2times0+1=1$. Thus $G^0|psirangle = sinfrac{(2times 0+1)theta}{2}|chirangle + cosfrac{(2times 0+1)theta}{2}|xirangle = sinfrac{theta}{2}|chirangle + cosfrac{theta}{2}|xirangle = |psirangle$ is true. Base Case Proven
Inductive Step
Let us assume this is true for $forall R leq k$ i.e. $G^{k}|psirangle = sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle $
Induction Proof
Note: The math below is terse but not that complicated. However, it requires some prior knowledge of trigonmetry identities as well as Ket-Bra Algebra
First we will derive some useful results. From the same paper's Appendix B1 we are given that $G = UO = (H^{otimes n}(2|0ranglelangle0|-I)H^{otimes n})O$ where $O$ is the oracle.
We know that since all states in $|chirangle$ are marked and all states in $|xirangle$ are unmarked therefore,
$$O|chirangle =-|chirangle$$ $$O|xirangle =|xirangle$$
Thus by Linearity, $$O(sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle) = -sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle$$
Moreover it is important to note that $langlexi|chirangle =langlechi|xirangle=0$ as $|chirangle and |xirangle$ are orthogonal
Now, $$U = H^{otimes n}(2|0ranglelangle0|-I)H^{otimes n} = 2H^{otimes n}|0ranglelangle0|H^{otimes n} - I $$
We note that $H^{otimes n}|0rangle = frac{1}{N}sum_{x=0}^{N-1}|xrangle = |psirangle = sinfrac{theta}{2}|chirangle + cosfrac{theta}{2}|xirangle$
Thus, $$ U = 2|psiranglelangle psi| - I = 2(sinfrac{theta}{2}|chirangle + cosfrac{theta}{2}|xirangle)(sinfrac{theta}{2}langlechi| + cosfrac{theta}{2}langlexi|) - I = 2(sin^2frac{theta}{2}|chiranglelanglechi| + cosfrac{theta}{2}sinfrac{theta}{2}|xiranglelanglechi| + cosfrac{theta}{2}sinfrac{theta}{2}|chiranglelanglexi| + cos^2frac{theta}{2}|xiranglelanglexi|) - I$$
Therefore for $G^{k+1}|psirangle$ $$G^{k+1}|psirangle = GG^k|psirangle = G(sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle) = UO(sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle) = U(-sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle) = (2(sin^2frac{theta}{2}|chiranglelanglechi| + cosfrac{theta}{2}sinfrac{theta}{2}|xiranglelanglechi| + cosfrac{theta}{2}sinfrac{theta}{2}|chiranglelanglexi| + cos^2frac{theta}{2}|xiranglelanglexi|) - I) (-sinfrac{(2k+1)theta}{2}|chirangle + cosfrac{(2k+1)theta}{2}|xirangle) $$
If we expand this expression, cancel out the terms where inner product is zero and combine the coefficients involving the same state we get,
$$ G^R|psirangle = (-(2sin^2frac{theta}{2}-1)sinfrac{(2k+1)theta}{2} + (2cosfrac{theta}{2}sinfrac{theta}{2})cosfrac{(2k+1)theta}{2})|chirangle + (-(2cosfrac{theta}{2}sinfrac{theta}{2})sinfrac{(2k+1)theta}{2} + (2cos^2frac{theta}{2}-1)cosfrac{(2k+1)theta}{2})|xirangle$$
Using some trigonometry we can simply it further $$ G^R|psirangle = (costhetasinfrac{(2k+1)theta}{2} + sinthetacosfrac{(2k+1)theta}{2})|chirangle + (-sinthetasinfrac{(2k+1)theta}{2} + costhetacosfrac{(2k+1)theta}{2})|chirangle = sin(theta + frac{(2k+1)theta}{2})|chirangle + cos(theta + frac{(2k+1)theta}{2})|xirangle = sinfrac{(2k+3)theta}{2}|chirangle + cosfrac{(2k+3)theta}{2}|xirangle = sinfrac{(2(k+1)+1)theta}{2}|chirangle + cosfrac{(2(k+1)+1)theta}{2}|xirangle $$
This is exactly what we wanted. Hence our proof by Mathematical Induction is complete.
QED
Answered by vasjain on October 19, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP