TransWikia.com

Why commutator of positive and negative parts of scalar field is equal to the Feynman propagator?

Physics Asked on June 27, 2021

Peskin & Schroeder state that the contraction of two fields, defined as the commutator:
$$ [phi^+(x),phi^-(y)]qquad text{assuming} x^0>y^0$$
is equal to the Feynman propagator $D_F(x-y)$. But, why is that true?
If we take the definition of positive and negative frequency parts of the field:
$$begin{aligned}
phi^+(x) &= intfrac{d^3p}{(2pi)^3}frac{1}{sqrt{2E_{mathbf{p}}}}a_{mathbf{p}}e^{-ipcdot x}
phi^-(x) &= intfrac{d^3p}{(2pi)^3}frac{1}{sqrt{2E_{mathbf{p}}}}a^dagger_{mathbf{p}}e^{+ipcdot x}
end{aligned}$$

And apply their commutator, we have:
$$begin{multline}
[phi^+(x),phi^-(y)] = intfrac{d^3p}{(2pi)^3}frac{d^3p’}{(2pi)^3}frac{1}{sqrt{2E_{mathbf{p}}}}frac{1}{sqrt{2E_{mathbf{p’}}}}e^{-ipcdot x}e^{+ip’cdot y}underbrace{[a_{mathbf{p}},a^dagger_{mathbf{p’}}]}_{=(2pi)^3delta^3(mathbf{p}-mathbf{p’})}
=intfrac{d^3p}{(2pi)^3}frac{1}{2E_{mathbf{p}}}e^{-ipcdot(x-y)}
end{multline}$$

From here, I don’t know how to go about getting the Feynman propagator. Any suggestion?

One Answer

Just evaluate the $p^0$ part of the integral. For $x^0>y^0$, we can close the contour below and enclose the pole at $p^0=E_mathbf{p}$ (there's a pole at this point because $p$ is on-shell, so $p^2-m^2=0$). Then we evaluate the integral using Cauchy's integral formula, (I'm playing fast and loose with the $iepsilon$) $$int frac{d p^0}{2 pi } frac{ie^{-i p cdot(x-y)}}{p^{2}-m^{2}+i epsilon}=intfrac{d p^0}{2 pi i} frac{-e^{-ip cdot(x-y)}}{(p^0+sqrt{m^{2}+mathbf{p}^2})(p^0-sqrt{m^{2}+mathbf{p}^2})+i epsilon}$$ $$=-intfrac{d p^0}{2 pi i} frac{e^{-ip cdot(x-y)}}{(p^0+E_mathbf{p})(p^0-E_mathbf{p})+i epsilon}=frac{e^{-ip cdot(x-y)}}{2E_mathbf{p}+i epsilon},$$ where it's implicitly understood that $p^0=E_mathbf{p}$ in the final $e^{-ip cdot(x-y)}$. Note that a sign flip occurred because we're integrating clockwise instead of counterclockwise as assumed in Cauchy's integral formula. Using the above, we get (for $x^0>y^0$ only) that $$int frac{d^{4} p}{(2 pi)^{4}} frac{i e^{-i p cdot(x-y)}}{p^{2}-m^{2}+i epsilon}=int frac{d^{3} p}{(2 pi)^{3}} frac{e^{-i p cdot(x-y)}}{2E_mathbf{p}+i epsilon}.$$

Correct answer by JoshuaTS on June 27, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP