TransWikia.com

The commutation of translation operator with Hamiltonian under electromagnetic field

Physics Asked by Zz Lin on May 30, 2021

The book "Introduction to Solid-state" by Madelung gives the commutation of translation operator with Hamiltonian under an electromagnetic field in section 2.2.9 . The Hamiltonian is

$$H=frac{1}{2 m}(p+e A)^{2}+V(r)+e E cdot r$$

It then gives the commutator without proof:

$$left[T_{R}, Hright]=left(xi cdot R+frac{e^{2} B^{2}}{2 m} R_{x}^{2}right) T_{R} quad mathrm{w} mathrm{i} mathrm{th} quad xi=e boldsymbol{v} times boldsymbol{B}+e boldsymbol{E}+e dot{boldsymbol{A}}$$

I failed to work it out. Could anyone please help me?

My derivation is as follows

Inserting $mathbf{A}=(0,Bx,0)$ into the Hamiltonian, we have:
$$
begin{array}{ll}
H &=frac{1}{2 m}(mathbf{p}+e mathbf{A})^{2}+V(r)+e mathbf{E} cdot mathbf{r}
&=frac{1}{2 m}(p^2+emathbf{p} cdot mathbf{A} +e mathbf{A}cdot mathbf{p} +e^2A^2)+e mathbf{E} cdot mathbf{r}+V(r)
&=frac{1}{2 m}(p^2+ep_yBx + eBxp_y+e^2B^2x^2)+e mathbf{E} cdot mathbf{r}+V(r).
end{array}
$$

Now we consider the commutation of this Hamiltonian with a translation operator $T(mathbf{R})$, where $mathbf{R}=(R_x,R_y,R_z)$. We first work out the commutation of $T(mathbf{R})$ with the term related to the electric field:

$$
begin{array}{ll}
[T(mathbf{R}),e mathbf{E} cdot mathbf{r}]&=e[T(mathbf{R}),mathbf{E}]cdotmathbf{r}+emathbf{E}cdot[T(mathbf{R}),mathbf{r}]
&=e[mathbf{E}(mathbf{r}+mathbf{R})-mathbf{E}(mathbf{r})]T(mathbf{R})+emathbf{E}cdotmathbf{R}T(mathbf{R})
&=emathbf{E}cdotmathbf{R}T(mathbf{R}).
end{array}
$$

Then we go to the terms related to the magnetic field, we first pay attention to the term linearly dependent to the magnetic field:
$$
begin{array}{ll}
[T(mathbf{R}),e p_yBx]&=ep_yB[T(mathbf{R}),x]
&=ep_yBR_xT(mathbf{R}).
end{array}
$$

We then pay attention to the terms quadratically dependent to the magnetic field:

$$
begin{array}{ll}
[T(mathbf{R}),e^2 B^2x^2]&=e B^2[T(mathbf{R}),x^2]
&=e^2B^2[T(mathbf{R}),x^2]
&=e^2B^2{x[T(mathbf{R}),x]+[T(mathbf{R}),x]x}
&=e^2B^2[xR_xT(mathbf{R})+R_xT(mathbf{R})x]
&=e^2B^2[xR_xT(mathbf{R})+R_xxT(mathbf{R})++R^2_xT(mathbf{R})]
&=2e^2B^2xR_xT(mathbf{R})+e^2B^2R^2_xT(mathbf{R}).
end{array}
$$

In summary, the commutation is

$$
begin{array}{ll}
[T(mathbf{R}),H]&=emathbf{E}cdotmathbf{R}T(mathbf{R})+frac{1}{2m}{2ep_yBR_xT(mathbf{R})+2e B^2xR_xT(mathbf{R})+e B^2R^2_xT(mathbf{R})}
&={emathbf{E}cdotmathbf{R}+frac{1}{m}[ep_yBR_x+ e B^2xR_x]+frac{1}{2m}e B^2R^2_x}T(mathbf{R})
&={emathbf{E}cdotmathbf{R}+ev_yBR_x+frac{1}{m} (e^2B^2xR_x)+frac{1}{2m}e^2B^2R^2_x}T(mathbf{R})
end{array}
$$

The final results given in the book is :

$$
begin{array}{}
left[T(mathbf{R}), Hright]&=left(xi cdot mathbf{R}+frac{e^{2} B^{2}}{2 m} R_{x}^{2}right) T(mathbf{R}) quad mathrm{w} mathrm{i} mathrm{th} quad xi=e boldsymbol{v} times boldsymbol{B}+e boldsymbol{E}+e dot{boldsymbol{A}}
&=(eBv_yR_x-eBv_xR_y+frac{e^{2} B^{2}}{2 m} R_{x}^{2}+emathbf{E}cdotmathbf{R}+edot{boldsymbol{A}}cdotmathbf{R})T(mathbf{R})
&=(eBv_yR_x+frac{e^{2} B^{2}}{2 m} R_{x}^{2}+emathbf{E}cdotmathbf{R})T(mathbf{R})
end{array}
$$

Comparing the two results, we find an extral term $frac{1}{m} (e^2B^2xR_x)$. Is this term left out by the book?

One Answer

  1. The Hamiltonian (2.131) is

    $$ H = frac{1}{2m}({bf p} + e{bf A})^2 + V({bf r}) + e {bf E} cdot {bf r}. tag{1}$$

    The electric and magnetic fields are constant (homogeneous, so independent of position), and furthermore from section 2.1.6 we take the particular magnetic field ${bf B} = (0,0,B)$ with choice of vector potential ${bf A} = (0, x B,0)$.

  2. The potential $V({bf r})$ is considered to be invariant under lattice translations $T_{bf R}$, so $[T_{bf R}, V({bf r})] = 0$.

  3. We calculate

    $$ [T_{bf R},e {bf E} cdot {bf r}] = e {bf E} cdot [T_{bf R},{bf r}] = e {bf E} cdot {bf R} T_{bf R}, tag{2}$$ where in the first equality we used the fact that the electric field ${bf E}({bf r})$ is independent of position, and in the last equality $[T_{bf R},{bf r}] = {bf R} T_{bf R}$.

  4. So the only difficult part is the first term of the Hamiltonian. Using the notation ${bf P} = {bf p} + e {bf A}$, that term is equal to ${bf P}^2/2m$.

    • We first calculate

      $$ [T_{bf R}, {bf P}] = [T_{bf R}, {bf p} + e {bf A}] = e [T_{bf R}, {bf A}] = e ({bf R} cdot nabla ) {bf A} T_{bf R} tag{3}$$

      In the second equality we used that the momentum operator ${bf p}$ is the generator of translations and therefore commutes with the translation operator. In the last equality we used the expansion

      $$ T_{bf R} f({bf r}) = f({bf r} + {bf R}) = f({bf r}) + {bf R} cdot nabla f({bf r}) + ldots$$ for any function $f({bf r})$.

    • We write $[T_{bf R}, {bf P}] equiv {bf W}T_{bf R}$ with ${bf W} equiv e ({bf R} cdot nabla ) {bf A}$. Then

      $$begin{eqnarray} [T_{bf R}, {bf P}^2] &=& {bf P} cdot [T_{bf R},{bf P}] + [T_{bf R},{bf P}]cdot{bf P} = {bf P} cdot{bf W}T_{bf R} + {bf W}cdot T_{bf R}{bf P} nonumber &=& 2{bf P} cdot{bf W}T_{bf R} + {bf W}cdot {bf W} T_{bf R}. tag{4} end{eqnarray}$$ The first equality is just a commutator identity; we used $ T_{bf R}{bf P} = {bf P}T_{bf R} + [T_{bf R},{bf P}]$ in the last step, as well as ${bf P} cdot {bf W} = {bf W} cdot {bf P}$ (since $nabla cdot {bf A} = 0$).

    • Since ${bf A}$ only depends on $x$ and not on $y$ and $z$, we have $({bf R} cdot nabla ) {bf A} = R_x partial_x {bf A}$. Using the explicit choice of ${bf A} = (0,xB,0)$, we see $partial_x {bf A} = (0,B,0)$ (remember $B$ is the constant magnetic field amplitude). This leads to the term

    $$frac{1}{2m} {bf W}cdot {bf W} T_{bf R} = frac{e^2 B^2}{2m}R_x^2T_{bf R}. tag{5}$$

    • For the final term we need a trick that is also employed in (2.48)-(2.51) in section 2.1.6. First note that ${bf v} equiv dot{bf r} = nabla_{bf p} H = {bf P}/m$ from (2.48). This is also true for our Hamiltonian (1).

      Then we have $frac{1}{2m} 2{bf P} cdot {bf W} = e{bf v} cdot ({bf R} cdot nabla) {bf A}$. The vector notation is getting messy, so let's use index notation: $e v_n R_m partial_m A_n$.

      We know that ${bf B} = nabla times {bf A}$, or $B_k = epsilon_{kmn} partial_m A_n$. Using an $epsilon$-identity, one can then obtain $partial_m A_n = epsilon_{mnk} B_k + partial_n A_m$. So we have

      $$v_n R_m partial_m A_n = v_n R_mepsilon_{mnk} B_k + v_n R_mpartial_n A_m. tag{6} $$

      The first term is in the desired form $({bf v} times {bf B})cdot {bf R}$. We need 'the trick' for the second term. We again use that ${bf A}$ only depends on $x$, so that only $v_x partial_x$ does not vanish in $v_m partial_m$. Also, $partial_x A_m = (0,B,0)_m$. Combining this, we have $$v_n partial_n A_m = (0,v_x B,0)_m = (0,dot{x} B,0)_m = partial_t(0,xB,0)_m = dot{A}_m. tag{7}$$ Finally we see that $$frac{1}{2m} 2{bf P} cdot {bf W}T_{bf R} = e ( {bf v} times {bf B} + dot{bf A}) cdot {bf R}T_{bf R}. tag{8}$$

  5. Together, (2), (5) and (8) lead to the commutator

    $$[T_{bf R},H] = e ( {bf v} times {bf B} + {bf E} + dot{bf A}) cdot {bf R}T_{bf R} + frac{e^2 B^2}{2m}R_x^2T_{bf R}. tag{9}$$

Correct answer by Aron Beekman on May 30, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP