TransWikia.com

The action of the Kaluza–Klein reduction (Chapter 4 of "D-branes (Clifford Johnson)")

Physics Asked by KoKo_physmath on December 28, 2020

In the first part of Section 4, the author gives
begin{equation}
S = frac1{16pi G^N_{(5)}}int(-G_{(5)})^{1/2}R^{(5)}d^5x
= frac1{16pi G^N_{(4)}}int(-G_{(4)})^{1/2}Big(R^{(4)}
– frac32partial_muphipartial^muphi – frac14e^{3phi}F_{munu}F^{munu}Big)d^4x.
end{equation}

How is this reduction obtained?

I show the calculation I did below but it does not match:
begin{align}
S &= frac1{16pi G^N_{(5)}}int(-G_{(5)})^{1/2}R^{(5)}d^5x
= frac1{16pi G^N_{(5)}}int(-G_{(5)})^{1/2}
Big(R^{(4)} – 2e^{-phi}nabla^2e^phi – frac14e^{2phi}F_{munu}F^{munu}Big)d^5x
end{align}

The five dimensional metric is decomposed as
begin{equation}
G_{(5)}
= detbegin{bmatrix}
G^{(4)}_{munu} + G_{44}A_mu A_nu& G_{44}A_mu
G_{44}A_nu& G_{44}
end{bmatrix}
= detbegin{bmatrix}
G^{(4)}_{munu}& 0
G_{44}A_nu& G_{44}
end{bmatrix}
= G_{44}det(G^{(4)}_{munu})
=: G_{44}G_{(4)},;;
G_{44} = e^{2phi}.
end{equation}

$nabla^2f = g^{munu}nabla_mupartial_nu f
= g^{munu}partial_mupartial_nu f – g^{munu}Gamma^rho_{munu}partial_rho f$
, where the connection is changed as
begin{equation}
tildeGamma^rho_{munu}
= frac12e^{-2Omega}g^{rholambda}
(partial_mu(e^{2Omega}g_{lambdanu})
+ partial_nu(e^{2Omega}g_{lambdamu})
– partial_lambda(e^{2Omega}g_{munu}))
= Gamma^rho_{munu} + 2delta^rho_{(nu}partial_{mu)}Omega – g_{munu}partial^rhoOmega
end{equation}

Then the Laplacian changes as
begin{equation}
tildenabla^2f
= e^{-2Omega}(g^{munu}nabla_mupartial_nu f
+ (2-4)partial^rhoOmegapartial_rho f)
= e^{-2Omega}(nabla^2f – 2partial^rhoOmegapartial_rho f)
end{equation}

begin{align}
S &= frac1{16pi G^N_{(5)}}int(-G_{(5)})^{1/2}R^{(5)}d^5x
= frac1{16pi G^N_{(5)}}int(-G_{(5)})^{1/2}
Big(R^{(4)} – 2e^{-phi}nabla^2e^phi – frac14e^{2phi}F_{munu}F^{munu}Big)d^5x
end{align}

The five dimensional metric is decomposed as
begin{equation}
G_{(5)}
= detbegin{bmatrix}
G^{(4)}_{munu} + G_{44}A_mu A_nu& G_{44}A_mu
G_{44}A_nu& G_{44}
end{bmatrix}
= detbegin{bmatrix}
G^{(4)}_{munu}& 0
G_{44}A_nu& G_{44}
end{bmatrix}
= G_{44}det(G^{(4)}_{munu})
=: G_{44}G_{(4)},;;
G_{44} = e^{2phi}.
end{equation}

The transformation of the curvature under the conformal transformation is for
$tilde g_{munu} = e^{2Omega}g_{munu}$,
$tilde R = e^{-2Omega}[R – 2(D-1)nabla^2Omega – (D-2)(D-1)partial_muOmegapartial^muOmega]$.
Now applying it for $g_{munu} = G^{(4)}_{munu}$ and $D=4$ gives
begin{equation}
R^{(4)} = e^{2Omega}(tilde R^{(4)} + 6nabla^2Omega – 6partial_muOmegapartial^muOmega).
end{equation}

and the determinant factor changes as
$(-G_{44}G_{(4)})^{1/2} = (-e^{2phi}e^{-8Omega}tilde G_{(4)})^{1/2}$.

begin{align}
S &= frac{2pi R}{16pi G^N_{(5)}}int(-G_{(4)})^{1/2}e^{phi-4Omega}
Big(e^{2Omega}tilde R^{(4)}
+ 6e^{2Omega}nabla^2Omega
– 6e^{2Omega}partial_muOmegapartial^muOmeganonumber
&hspace{5cm}
– 2e^{-phi}e^{2Omega}(nabla^2e^phi + 2partial^rhoOmegapartial_rho e^phi)
– frac14e^{2phi+4Omega}F_{munu}F^{munu}Big)d^4x.
end{align}

By setting $Omega = phi/2$, the terms including $Omega$ and $phi$ are
begin{equation}
3nabla^2phi – frac32partial_muphipartial_muphi
– 2e^{-phi}(nabla^2e^phi + partial^muphipartial_mu e^phi)
rightarrow – frac72partial_muphipartial_muphi,
end{equation}

where we removed the total derivative terms.

One Answer

Unfortunately I don't have access to the text mentioned, so I'll show a similar calculation I've done in the past for the standard Kaluza-Klein compactification from $D=d+1$ to $d$ dimensions. This might be slightly different to the calculation in Johnson's book, but it's the best I can do without the text. It gives the answer required and also matches the answer given in many popular works, e.g. here, Eq (582). Note that usually one rescales the fields so that the kinetic terms are normalised. I assume Johnson does this later at some point, and it is a simple step.

Let me know if you have any confusion with my slightly different notation. (I use $R_D$ and $G$ for the $D$-dimensional Ricci scalar and metric respectively, etc).

Starting with the action begin{equation} tag{1} S = frac{1}{kappa_{D}^2} int d^{D}x sqrt{-G}R_{D} , end{equation} and the metric begin{equation} tag{2} ds_{0}^2 = G_{MN}(x)dx^M dx^N = g_{mu nu}(x)dx^{mu}dx^{nu}+ textrm{e}^{2Phi(x)}Big(A_{mu}(x)dx^{mu}+dy Big)^2 , end{equation} let us compactify onto a circle of radius $L$. First we decompose the Ricci scalar, begin{equation} tag{3} R_{D} = R_{d} - 2textrm{e}^{-Phi} nabla^{2}textrm{e}^{Phi} - frac{1}{4} textrm{e}^{2 Phi} F_{mu nu} F^{mu nu} , end{equation} where $R_d$ now denotes the curvature in $d$ dimensions, and $F_{mu nu} = partial_{mu} A_{nu} - partial_{nu} A_{mu}$ is the field strength in $d$ dimensions. The covariant derivative squared is defined by begin{equation} (nabla^2 Phi) = nabla_{mu} nabla^{mu} Phi , end{equation} which we can discarded as a total derivative in the transformation above: i.e. in the action (1) this term appears as begin{equation} -2 int d^dx sqrt{-g} nabla^2 textrm{e}^{Phi} = -2 int d^dx ~ partial_{mu} (sqrt{-g} nabla^{mu}textrm{e}^{phi}) = 0 . end{equation}

Now let us go back and deal with the metric determinant which is simply begin{equation} tag{4} sqrt{-G} = sqrt{-g textrm{e}^{2 Phi}} = textrm{e}^{Phi} sqrt{-g} . end{equation}

Putting (3) and (4) back into the action and integrating out the $y$ coordinate (the $D^{th}$ dimension) gives the compactified $d$-dimensional action, begin{equation} tag{5} S_{(0)} = frac{2 pi L}{kappa_{D}^2} int d^d x sqrt{-g} textrm{e}^{Phi} Big[R_{d} - frac{1}{4} textrm{e}^{2 Phi} F_{mu nu} F^{mu nu} Big] , end{equation} the $2 pi L$ coming from the circumference of the compactified dimensions (I think this may be absorbed into the $G^{N}_{4}$ in your question but I'm not sure). The action is in the Jordan frame, so we apply the conformal/Weyl rescaling of the metric to write the action in the Einstein frame (i.e. with the usual minimal coupling of the EH-action), begin{equation} tag{6} g_{mu nu} = Omega^2 tilde{g}_{mu nu} textrm{where} Omega^2 = textrm{e}^{2 omega} . end{equation} We easily find $omega$ by seeing that begin{equation} sqrt{-g} cdot textrm{e}^{Phi} cdot R_d rightarrow sqrt{-tilde{g}} textrm{e}^{d omega} cdot textrm{e}^{Phi} cdot tilde{R}_d textrm{e}^{-2 omega} = sqrt{-tilde{g}} tilde{R}_d , end{equation} begin{equation} Rightarrow omega = frac{Phi}{2-d} . end{equation} The Ricci scalar and metric determinant then become begin{equation} tag{7} R_d = textrm{e}^{frac{-2 Phi}{2-d}} Big[tilde{R}_d - frac{2(d-1)}{2-d} tilde{nabla}^2 Phi - frac{d-1}{d-2} tilde{g}^{mu nu}tilde{nabla}_{mu}Phi tilde{nabla}_{nu} Phi Big] ; sqrt{-g}=sqrt{-tilde{g}} textrm{e}^{frac{d Phi}{2-d}} , end{equation} where we've used the standard conformal transformation formula for the Ricci scalar. The field strength terms $F_{mu nu}$ transform under the conformal rescaling in the action like begin{equation} tag{8} %F^{mu nu}F_{mu nu} = g^{mu rho} g^{nu sigma} F_{rho sigma} g_{mu rho} g_{nu sigma} F^{rho sigma} = textrm{e}^{-4 omega} tilde{g}^{mu rho} tilde{g}^{nu sigma} tilde{F}_{rho sigma} textrm{e}^{4 omega} tilde{g}_{mu rho} tilde{g}_{nu sigma} tilde{F}^{rho sigma} = tilde{F}_{rho sigma} tilde{F}^{rho sigma} . sqrt{-g} g^{mu rho} g^{nu sigma} F_{rho sigma} F_{rho sigma} = sqrt{-tilde{g}} textrm{e}^{d omega} textrm{e}^{-2 omega} textrm{e}^{-2 omega} tilde{g}^{mu rho} tilde{g}^{nu sigma} tilde{F}_{mu nu} tilde{F}_{rho sigma} = sqrt{-tilde{g}} textrm{e}^{frac{phi (d-4)}{2-d}} tilde{g}^{mu rho} tilde{g}^{nu sigma} tilde{F}_{mu nu} tilde{F}_{rho sigma} , end{equation} which is invariant in $d=4$ dimensions.

Substituting (7) and (8) into the compactified action (5), and dropping the total derivative again, gives the $d$-dimensional action in the Einstein frame, begin{equation} tag{9} S_{(0)}^E = frac{2 pi L}{kappa_{D}^2} int d^d x sqrt{-tilde{g}} Big[tilde{R}_d - Big(frac{d-1}{d-2} Big) (tilde{nabla} Phi)^2 - frac{1}{4} textrm{e}^{frac{phi(4d-10)}{(d-2)}} tilde{F}^2 Big] , end{equation} where $F^2=F_{mu nu}F^{mu nu}$ and $(nabla Phi)^2 = g^{mu nu} nabla_{mu} Phi nabla_{nu} Phi $. Now simply put in $d=4$ and we arrive at begin{equation} tag{10} S_{(0)}^E = frac{2 pi L}{kappa_{D}^2} int d^d x sqrt{-tilde{g}} Big[tilde{R}_d - frac{3}{2}partial_{mu} Phi partial^{mu} Phi - frac{1}{4} textrm{e}^{3Phi} tilde{F}^2 Big] . end{equation} where we've noted that $Phi$ is a scalar so $tilde{nabla}_{mu} Phi = partial_{mu} Phi$. You can then go onto to rescale the field $Phi$ to give the correct kinetic term, but this answer is already very long and the details are in the reference at the end. You might have to work out how the gravitational coupling constants align with the text you're working from.

Answered by Eletie on December 28, 2020

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP