Physics Asked by grjj3 on November 7, 2020
I stumbled upon the following question:
Given the Hamiltonian of a spin-$1/2$ particle
$$hat{H}=epsilonbegin{pmatrix} 0 & -e^{ipi/4}
-e^{-ipi/4} & 0 end{pmatrix} = frac{2epsilon}{hbar} vec{S} cdot frac{hat{y}-hat{x}}{sqrt{2}}$$what is the rotation transformation that diagonalizes $hat{H}$? Find the angle of rotation $theta$ and the axis of rotation $hat{n}$.
Finding the matrix which diagonalizes $hat{H}$ is not particularly difficult. For instance,
$$U=frac{1}{sqrt{2}}begin{pmatrix}
1 & -frac{1+i}{sqrt{2}}
frac{1-i}{sqrt{2}} & 1
end{pmatrix}$$
does the job. However it is then claimed that this matrix corresponds to a transformation through an angle $theta=pi/2$ about $hat{n}=(hat{x}+hat{y})/sqrt{2}$. But I’m not quite sure how this can be immediately inferred from the entries of $U$. Moreover, I don’t think that $U$ can be decomposed into a sum of $sigma_x$ and $sigma_y$ Pauli matrices. I thought about directly calculating $mathcal{D(hat{n},theta})=expleft[-frac{i}{hbar}vec{S}cdot left(frac{hat{x}+hat{y}}{sqrt{2}}right)right]$ (rotation operator) to check if it coincides with $U$ in the relevant basis, but it seems too exhausting. Perhaps I miss something trivial?
Just use the standard exponentiation of Pauli matrices, knowing that $vec S =hbar vec sigma /2$ for the doublet representation, which halves the rotation angles, $$ e^{-i{piover 4}vec sigma cdot { (hat x + hat y) over sqrt{2}} } = cos (pi /4) -i vec{sigma}cdot frac{(hat x +hat y)} {sqrt{2}} ~ sin (pi/4) = frac{1}{sqrt{2}} (I -i(sigma_x+sigma_y)/sqrt{2})=U. $$
It is analogous to Euler's formula.
I gather you have done the diagonalization algebra utilizing the properties of Pauli matrices: hardly any calculation!
Correct answer by Cosmas Zachos on November 7, 2020
REFERENCE : My answer on How does the Hamiltonian changes after rotating the coordinate frame. $boldsymbol{=!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!=}$
Note : In the following for the unit vectors along the coordinate axes $hat{x},hat{y},hat{z}$ I use the symbols $mathbf{i},mathbf{j},mathbf{k}$ respectively. $boldsymbol{=!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!==!=!=!=}$
The Hamiltonian is the following hermitian traceless matrix
begin{equation}
Hboldsymbol{=}alphaleft(sigma_{y}boldsymbol{-}mathrm sigma_{x}right),,quad alphaboldsymbol{=}dfrac{sqrt{2}epsilon}{hbar}
tag{01}label{01}
end{equation}
From the bijection between hermitian traceless matrices and real 3-vectors (discussed in paragraph ''The reasoning'' of aforementioned REFERENCE) the representative real 3-vector of this Hamiltonian is
begin{equation}
mathbf{h}boldsymbol{=}alphaleft(mathbf{j}boldsymbol{-}mathbf{i}right)
tag{02}label{02}
end{equation}
as shown in Figure-01.
If the Hamiltonian $H'$ of equation eqref{01} must be transformed to a diagonal one $H'$ then we must have begin{equation} H'boldsymbol{=}c,sigma_{z} ,,quad cin mathbb{R} tag{03}label{03} end{equation} Above expression is justified because not only $sigma_{z}$ is a diagonal hermitian matrix but moreover is traceless ($H'$ must be traceless since trace is invariant under similarity transformations).
To the transformed diagonal hermitian traceless matrix $H'$ there corresponds the representative real 3-vector begin{equation} mathbf{h'}boldsymbol{=}c,mathbf{k} tag{04}label{04} end{equation} If the transformation must be a rotation then the vector $mathbf{h'}$ of equation eqref{04} will be the image of the vector $mathbf{h}$ of equation eqref{02} so begin{equation} Vertmathbf{h'}Vertboldsymbol{=}Vertmathbf{h}Vert quad boldsymbol{Longrightarrow} quad cboldsymbol{=}sqrt{2},alpha tag{05}label{05} end{equation} that is begin{align} H'&boldsymbol{=}sqrt{2},alpha,sigma_{z} tag{06a}label{06a} mathbf{h'} &boldsymbol{=}sqrt{2},alpha,mathbf{k} tag{06b}label{06b} end{align} as shown in Figure-01.
The most simple rotation that brings the vector $mathbf{h}$ on vector $mathbf{h'}$ is around a unit vector $mathbf{n}$ through an angle $theta$ given by begin{align} mathbf{n}&boldsymbol{=}dfrac{mathbf{i}boldsymbol{+}mathbf{j}}{sqrt{2}} tag{07a}label{07a} theta &boldsymbol{=}dfrac{pi}{2} tag{07b}label{07b} end{align} shown in Figure-01. This rotation is represented by the following special unitary matrix $SU(2)$ begin{equation} boxed{::U_{mathbf{n} ,theta}boldsymbol{=} cosfrac{theta}{2}boldsymbol{-}i(mathbf{n} boldsymbol{cdot} boldsymbol{sigma})sinfrac{theta}{2}boldsymbol{=}dfrac{sqrt{2}}{2}left(Iboldsymbol{-}i,dfrac{sigma_xboldsymbol{+}sigma_y}{sqrt{2}}right)vphantom{dfrac{dfrac{a}{b}}{dfrac{a}{b}}}::} tag{08}label{08} end{equation}
It could be verified easily, using the properties of Pauli matrices, that $U_{mathbf{n} ,theta}$ diagonalizes the Hamiltonian $H$, that is begin{equation} U_{mathbf{n} ,theta},H,U^{*}_{mathbf{n} ,theta}boldsymbol{=}H' tag{09}label{09} end{equation} or explicitly begin{equation} dfrac{sqrt{2}}{2}left(Iboldsymbol{-}i,dfrac{sigma_xboldsymbol{+}sigma_y}{sqrt{2}}right),left(sigma_yboldsymbol{-}sigma_xvphantom{dfrac{sigma_xboldsymbol{+}sigma_y}{sqrt{2}}} right),dfrac{sqrt{2}}{2}left(Iboldsymbol{+}i,dfrac{sigma_xboldsymbol{+}sigma_y}{sqrt{2}}right)boldsymbol{=}sqrt{2},sigma_z tag{10}label{10} end{equation}
Note that as there exist infinitely many rotations that bring the vector $mathbf{h}boldsymbol{=}alphaleft(mathbf{j}boldsymbol{-}mathbf{i}right)$ of equation eqref{02} to the vector $mathbf{h'}boldsymbol{=}sqrt{2},alpha,mathbf{k}$ of equation eqref{06b}, so there are infinitely many unitary matrices like that of equation eqref{08} which diagonalize the Hamiltonian $Hboldsymbol{=}alphaleft(sigma_{y}boldsymbol{-}mathrm sigma_{x}right)$ of equation eqref{01}. For example, a rotation around a unit vector $mathbf{m}$ through an angle $phi$ given by begin{align} mathbf{m}&boldsymbol{=}dfrac{boldsymbol{-}mathbf{i}boldsymbol{+}mathbf{j}boldsymbol{+}sqrt{2}mathbf{k}}{2} tag{11a}label{11a} phi &boldsymbol{=}pi tag{11b}label{11b} end{align} as shown in Figure-02 diagonalizes the Hamiltonian. The corresponging special unitary matrix is begin{equation} boxed{::U_{mathbf{m} ,phi}= cosfrac{phi}{2}-i(mathbf{m} boldsymbol{cdot} boldsymbol{sigma})sinfrac{phi}{2}=dfrac{i}{2}left( sigma_x-sigma_y-sqrt{2}sigma_z right)vphantom{dfrac{dfrac{a}{b}}{dfrac{a}{b}}}:: } tag{12}label{12} end{equation} Again, it could be verified easily, using the properties of Pauli matrices, that $U_{mathbf{m} ,phi}$ diagonalizes the Hamiltonian $H$, that is begin{equation} U_{mathbf{m} ,phi},H,U^{*}_{mathbf{m} ,phi}boldsymbol{=}H' tag{13}label{13} end{equation} or explicitly begin{equation} left[dfrac{i}{2}left(sigma_x-sigma_y-sqrt{2}sigma_z right)right],left(sigma_yboldsymbol{-}sigma_xvphantom{dfrac{sigma_xboldsymbol{+}sigma_y}{sqrt{2}}} right),left[boldsymbol{-}dfrac{i}{2}left(sigma_x-sigma_y-sqrt{2}sigma_z right)right]boldsymbol{=}sqrt{2},sigma_z tag{14}label{14} end{equation}
Answered by Frobenius on November 7, 2020
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP