Physics Asked by user22710 on December 27, 2020
I have the following process: two ingoing particles, a photon hitting a nucleus, and two outgoing particles, the nucleus and a pion. I have computed $|M|^2$ and the differential cross section in the center of mass frame $frac{d sigma}{d Omega_{CM}}$; I now have to go into the lab frame, where the nucleus is initially at rest, and consider the limit of a infinite massive nucleus $M_N to infty$, and compute $frac{d sigma}{d Omega_{lab}}$.
Is there a general procedure to go from the first to the second?
I first wrote $frac{d sigma}{dt}$ and then multiplied it for a rather complicated expression that I found on a book to obtain $frac{d sigma}{d Omega_{lab}}$. However, taking the infinite massive nucleus limit, the result I get is not what I’m supposed to.
A Lorentz boost can be used to go from the center of mass frame to the lab frame. Mandelstam variables are invariant under a boost. Here is the boost procedure for Compton scattering:
In the center of mass frame, let $p_1$ be the inbound photon, $p_2$ the inbound electron, $p_3$ the scattered photon, $p_4$ the scattered electron.
begin{equation*} p_1=begin{pmatrix}omega omegaend{pmatrix} qquad p_2=begin{pmatrix}E -omegaend{pmatrix} qquad p_3=begin{pmatrix} omega omegasinthetacosphi omegasinthetasinphi omegacostheta end{pmatrix} qquad p_4=begin{pmatrix} E -omegasinthetacosphi -omegasinthetasinphi -omegacostheta end{pmatrix} end{equation*}
where $E=sqrt{omega^2+m^2}$.
It is easy to show that
begin{equation} langle|mathcal{M}|^2rangle = frac{e^4}{4} left( frac{f_{11}}{(s-m^2)^2} +frac{f_{12}}{(s-m^2)(u-m^2)} +frac{f_{12}^*}{(s-m^2)(u-m^2)} +frac{f_{22}}{(u-m^2)^2} right) end{equation}
where
begin{equation} begin{aligned} f_{11}&=-8 s u + 24 s m^2 + 8 u m^2 + 8 m^4 f_{12}&=8 s m^2 + 8 u m^2 + 16 m^4 f_{22}&=-8 s u + 8 s m^2 + 24 u m^2 + 8 m^4 end{aligned} end{equation}
for the Mandelstam variables $s=(p_1+p_2)^2$, $t=(p_1-p_3)^2$, $u=(p_1-p_4)^2$.
Next, apply a Lorentz boost to go from the center of mass frame to the lab frame in which the electron is at rest.
begin{equation*} Lambda= begin{pmatrix} E/m & 0 & 0 & omega/m 0 & 1 & 0 & 0 0 & 0 & 1 & 0 omega/m & 0 & 0 & E/m end{pmatrix}, qquad Lambda p_2=begin{pmatrix}m 0 0 0end{pmatrix} end{equation*}
The Mandelstam variables are invariant under a boost. begin{equation} begin{aligned} s&=(p_1+p_2)^2=(Lambda p_1+Lambda p_2)^2 t&=(p_1-p_3)^2=(Lambda p_1-Lambda p_3)^2 u&=(p_1-p_4)^2=(Lambda p_1-Lambda p_4)^2 end{aligned} end{equation}
In the lab frame, let $omega_L$ be the angular frequency of the incident photon and let $omega_L'$ be the angular frequency of the scattered photon. begin{equation} begin{aligned} omega_L&=Lambda p_1cdot(1,0,0,0)=frac{omega^2}{m}+frac{omega E}{m} omega_L'&=Lambda p_3cdot(1,0,0,0)=frac{omega^2costheta}{m}+frac{omega E}{m} end{aligned} end{equation}
It follows that begin{equation} begin{aligned} s&=(p_1+p_2)^2=2momega_L+m^2 t&=(p_1-p_3)^2=2m(omega_L' - omega_L) u&=(p_1-p_4)^2=-2 m omega_L' + m^2 end{aligned} end{equation}
Compute $langle|mathcal{M}|^2rangle$ from $s$, $t$, and $u$ that involve $omega_L$ and $omega_L'$. begin{equation*} langle|mathcal{M}|^2rangle= 2e^4left( frac{omega_L}{omega_L'}+frac{omega_L'}{omega_L} +left(frac{m}{omega_L}-frac{m}{omega_L'}+1right)^2-1 right) end{equation*}
From the Compton formula begin{equation*} frac{1}{omega_L'}-frac{1}{omega_L}=frac{1-costheta_L}{m} end{equation*}
we have begin{equation*} costheta_L=frac{m}{omega_L}-frac{m}{omega_L'}+1 end{equation*}
Hence begin{equation*} langle|mathcal{M}|^2rangle= 2e^4left( frac{omega_L}{omega_L'}+frac{omega_L'}{omega_L}+cos^2theta_L-1 right) end{equation*}
The differential cross section for Compton scattering is begin{equation*} frac{dsigma}{dOmega}propto left(frac{omega_L'}{omega_L}right)^2langle|mathcal{M}|^2rangle end{equation*}
Answered by guest on December 27, 2020
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP