TransWikia.com

Mean value of projection operator

Physics Asked on May 30, 2021

In an orthonormal eigenbasis ${ left|psi_1rightrangle , left|psi_2rightrangle}$ of the Hamiltonian operator $hat{H}$ we have the projection operator:

$$ hat{mathbb{P}} = prod_{i neq j} left( frac{hat{H} – lambda_i}{lambda_j – lambda_i} right)$$

and :

$$ hat{H} left|psi_1rightrangle = lambda_1 left|psi_1rightrangle$$

$$ hat{H} left|psi_2rightrangle = lambda_2 left|psi_2rightrangle$$

Dependent upon our choice:

$lambda_i = lambda_1 longrightarrow lambda_j = lambda_2$

$$ hat{mathbb{P}} = left|psi_1rightrangle leftlanglepsi_1right|$$

or $lambda_i = lambda_2 longrightarrow lambda_j = lambda_1$:

$$ hat{mathbb{P}} = left|psi_2rightrangle leftlanglepsi_2right|$$

If we have:

$$ left|psirightrangle = c_1 left|psi_1rightrangle + c_2 left|psi_2rightrangle$$

we just conclude that the mean value of $hat{mathbb{P}}$ is $|c_1|^2$ or $|c_2|^2$ or do we unify it somehow? This is confusing me because of the product, I know we only consider when $i neq j$ but that is dependent on our initial choice for $lambda_i$, right?

One Answer

In this case, there are $2$ projection operators : begin{align} P_1 = |psi_1ranglelanglepsi_1| = frac{H - lambda_2}{lambda_1-lambda_2} P_2 = |psi_2ranglelanglepsi_2| = frac{H-lambda_1 }{lambda_2-lambda_1} end{align}

These to operators satisfy : $P_i P_j = delta_{ij}P_j$, so if the product defining your $mathbb P$ is over both $i$ and $j$, you have $mathbb P = 0$.

The expected value of $P_i$ in the state $|psirangle = c_1 |psi_1 rangle + c_2 |psi_2 rangle$ is $|c_i|^2$.

Correct answer by SolubleFish on May 30, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP