# Lorentz transformation matrix for all 3 spatial axes

Physics Asked on January 4, 2022

The lorentz transformation matrix (for all 3 spatial axes, not just a single dimension boost) appears to be commonly defined as the following:
$$begin{bmatrix} gamma &-gamma v_x/c &-gamma v_y/c &-gamma v_z/c \ -gamma v_x/c&1+(gamma-1)dfrac{v_x^2} {v^2}& (gamma-1)dfrac{v_x v_y}{v^2}& (gamma-1)dfrac{v_x v_z}{v^2} \ -gamma v_y/c& (gamma-1)dfrac{v_y v_x}{v^2}&1+(gamma-1)dfrac{v_y^2} {v^2}& (gamma-1)dfrac{v_y v_z}{v^2} \ -gamma v_z/c& (gamma-1)dfrac{v_z v_x}{v^2}& (gamma-1)dfrac{v_z v_y}{v^2}&1+(gamma-1)dfrac{v_z^2} {v^2} end{bmatrix}$$
I tried to derive it myself by combining the matrices for the individual boost directions and making $$v=|vec{v}|$$and ended up at
$$begin{bmatrix} ct’ \ x’ \ y’ \ z’ \ end{bmatrix} = begin{bmatrix} gamma & -beta_xgamma& -beta_ygamma & -beta_zgamma \ -frac{beta_y} {gamma_{v_x}} & frac{1}{gamma_{v_x}} & 0 & 0 \ -frac{beta_y}{gamma_{v_y}} & 0 & frac{1}{gamma_{v_y}} & 0\-frac{beta_z}{gamma_{v_z}} & 0 & 0 & frac{1}{gamma_{v_z}} \ end{bmatrix} begin{bmatrix} ct \ x \ y \ z \ end{bmatrix}$$
Where $$gamma = displaystylefrac{1}{sqrt{1-displaystylefrac{|vec{v}|^2}{c^2}}}$$ and
$$gamma_{v_x} = displaystylefrac{1}{sqrt{1-displaystylefrac{v_x^2}{c^2}}}$$

2 questions. Where do the bottom right 9 terms come from in the common definition and why is the top $$gamma$$ and not $$frac{1}{gamma}$$ given that $$l′=frac{l}{gamma}$$ but $$t′=tgamma$$

$$Delta x =x_f-x_i=gamma(Delta x'+vDelta t')=gamma(x'_f-x'_i+v(t'_f-t'_i))$$ $$Delta t'=t'_f-t'_i=0$$ $$Delta t'=t'_f-t'_i=gamma(Delta t-frac{v(x_f-x_i)}{c^2})$$ $$Delta x=x_f-x_i=0$$

We deduce these facts: $$Delta x=gamma Delta x'=l=gamma Delta l'$$ and $$Delta t'= gamma Delta t$$ not $$t'=gamma t$$.The reason why is that we don't talk about a time of an event in spacetime. What we're interested in is time difference between two events.

Answered by Fatma Keskin on January 4, 2022