Physics Asked by sendlokashun on July 27, 2021
In certain circumstances; when energy fluctuation effects are minimal, the microcanonical and canonical ensembles give the same results.
Then, under different circumstances the canonical and grand canonical ensembles give the same results.
Can there be any instances where the microcanonical, canonical, and grand canonical ensembles all give equal results? If so, what would the circumstances be?
For most systems, the derived macroscopic thermal quantities from anyone of the formulations should have a same expression. Lets examine the simplest two-level system, this example appeared in many statistical text books, being treated in details for both microcanonical and canonical ensembles.
The two-level non-interaction system assumes particle can exists in one of the two levels:
begin{align} text{ Level 2 } --- & & text{Number } = N_2 & & text{ Energy } = epsilon text{ Level 1 } --- & & text{Number } = N_1 & & text{ Energy } = 0 end{align}
Since this system has no vloume information. We can only find the average energy $U(T) = langle Erangle$, and the exprssion of entropy $S(T)$.
The canonical ensemble is the simplist one, Lets do it first: given total partical number $N$ and temperature $T$:
One-partical partition function $$ Z_1 = e^{-beta 0} + e^{-beta epsilon} = 1 + e^{-beta epsilon}. $$
Average occupation numbers: $$ N_1 = N frac{e^{-beta 0}}{e^{-beta 0} + e^{-beta epsilon}} = N frac{1}{1 + e^{-beta epsilon}} $$ $$ N_2 = N frac{e^{-beta epsilon}}{e^{-beta 0} + e^{-beta epsilon}} = N frac{e^{-beta epsilon}}{1 + e^{-beta epsilon}} = N frac{1}{1 + e^{beta epsilon}} $$ Therefore $$ tag{1} U = langle Erangle = N_2 epsilon = frac{N epsilon}{1 + e^{beta epsilon}} $$
Helmhotz free energy:
$$tag{2} F = - K T ln Z_N =- NKT ln(1 + e^{-beta epsilon}) . $$
Thus entropy $$ tag{3} S = frac{U-F}{T} = frac{N}{T}frac{epsilon}{1 + e^{beta epsilon}} + NK ln(1 + e^{-beta epsilon}). $$
Micro-canonical ensemble: given N, E
$$ N_2 = frac{E}{epsilon} $$ $$ N_1 = N - frac{E}{epsilon} $$
The microcanonical configurational number: $$ Gamma(N, E) = frac{N!}{frac{E}{epsilon}! left(N -frac{E}{epsilon} right)!} $$ $$ ln Gamma(N, E) = N ln frac{Nepsilon}{Nepsilon-E} + frac{E}{epsilon} ln frac{Nepsilon-E}{E} $$
The entropy $S$ $$ tag{4} S = K ln Gamma(N, E) =NKln frac{Nepsilon}{Nepsilon-E} + Kfrac{E}{epsilon} ln frac{Nepsilon-E}{E} $$
The temperature $frac{1}{T} = frac{partial S}{partial E}]_{E=U}$
$$tag{5} frac{1}{T} = frac{ K }{epsilon} ln frac{Nepsilon-U}{U} $$
Invert the above equation to find $U(T)$ $$tag{6} U = N frac{epsilon}{1 + e^{frac{epsilon}{K T}} } $$ The same as Eq. (1).
Substitute Eq.(5) and Eq.(6) into Eq.(4) $$ tag{7} S = NK ln left( 1 + e^{frac{epsilon}{K T}} right) + frac{U}{T} = NK ln left( 1 + e^{frac{epsilon}{K T}} right) + frac{N}{T} frac{epsilon}{1 + e^{frac{epsilon}{K T}} } $$
Eq. (7) is the same as Eq. (3).
Grand Canonical Ensemble: given chemical potential and temperature
For the system having partical number $N$ and total energy $E$, the probability is proportional to $exp(betamu N - beta E)$, and $N_2 = E / epsilon$, $N=N_1+N_2$. And the multiplicity $frac{N!}{N_1! N_2!}$ $$ Z = sum_{N,E} frac{N!}{N_1! N_2!} expleft(betamu N - beta E right) = sum_{N, N_2} frac{N!}{(N-N_2)! N_2!} expleft{betamu (N-N_2) + beta N_2 (mu-epsilon) right} $$
$$ = sum_{N=0,1,2..} sum_{N_2=0}^N frac{N!}{(N-N_2)! N_2!} exp^{N-N_2}left(betamuright) exp^{N_2}left{beta (mu- epsilon) right} $$ $$ = sum_{N=0,1,2..} left{ e^{betamu} + e^{beta(mu-epsilon)} right}^N = frac{1}{left{ 1-e^{betamu} - e^{beta(mu-epsilon)} right} }. $$ $$ ln Z = - ln left{ 1 - e^{betamu} - e^{beta(mu-epsilon)} right} . $$ The grand potential $Omega = -K T ln Z$ $$ Omega = -KTln Z = KTln left{ 1 - e^{betamu} - e^{beta(mu-epsilon)} right}. $$
The average number $bar{N} = langle N rangle$: $$ bar{N} = -frac{partial Omega}{partial mu}=frac{e^{betamu} +e^{beta(mu-epsilon)} }{ 1 - e^{betamu} - e^{beta(mu-epsilon)}} equiv bar{N}_1 + bar{N}_2. $$ Where $bar{N}_1/bar{N}_2 = e^{beta epsilon}$.
The average anergy $U$ $$ U -mu bar{N} = -frac{partial ln Z}{partial beta} = -frac{ mu e^{betamu} +(mu -epsilon )e^{beta(mu-epsilon)} }{ 1 - e^{betamu} - e^{beta(mu-epsilon)}} = -mu bar{N} + epsilon bar{N}_2. $$ $$ tag{8} U = bar{N}_2 epsilon = frac{bar{N}epsilon}{1+e^{betaepsilon}} . $$ Eq. (8) is same as Eq.(1) from canonocal ensemble and Eq.(6) from microcanonical ensemble.
The entropy $$ S = -frac{partial Omega}{partial T} = -K ln left{ 1 - e^{betamu} - e^{beta(mu-epsilon)} right} + KT frac{ mu e^{betamu} +(mu -epsilon )e^{beta(mu-epsilon)} }{ 1 - e^{betamu} - e^{beta(mu-epsilon)}} frac{-1}{KT^2} $$ The first term resemble the grand potentail, and the second term $U - mubar{N}$ $$ S = -frac{Omega}{T} + frac{U-mubar{N}}{T} =frac{U-Omega-mubar{N}}{T}=frac{U-F}{T} $$ This relation resemble Eq.(3). The direct comparison between this entropy with Eq.(3) and Eq.(7) serves a charllenging exercise.
Answered by ytlu on July 27, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP