TransWikia.com

How to understand the trace operation below?

Physics Asked by YiPing on April 28, 2021

When studying the density operator, I read the document below. But the following trace calculation confuse me. It seems what he do is $mathrm{tr}(langlepsi _{a}|A|psi _{a}rangle)=mathrm{tr}(langlepsi_{a}| )mathrm{tr}(A)mathrm{tr}(|psi_{a}rangle)=mathrm{tr}(A|psi _{a}ranglelanglepsi _{a}|)$ since he writes "cyclic property of the trace". But I think trace is only defined for square matrix, how can we use things like $langlepsi _{a}|$?

2 Answers

I think that by $''$cyclic property of the trace$''$ we mean the following :

Consider $:k:$ finite dimensional matrices begin{align} mathrm A_1 & boldsymbol{=} n_1 times n_2 quad texttt{matrix} tag{1-01}label{1-01} mathrm A_2 & boldsymbol{=} n_2 times n_3 quad texttt{matrix} tag{1-02}label{1-02} mathrm A_3 & boldsymbol{=} n_3 times n_4 quad texttt{matrix} tag{1-03}label{1-03} cdots & boldsymbol{=} cdotcdot: times cdotcdot: quad texttt{matrix} tag{1-....}label{1-....} mathrm A_k & boldsymbol{=} n_k times n_1 quad texttt{matrix} tag{1-0k}label{1-0k} end{align} Then the product matrix $:mathrm A_1mathrm A_2mathrm A_3cdotsmathrm A_k:$ and all cyclic permutations of it are square matrices. Explicitly begin{align} mathrm A_1mathrm A_2mathrm A_3cdotsmathrm A_k & boldsymbol{=} n_1 times n_1 quad texttt{square matrix} tag{2-01}label{02-01} mathrm A_2mathrm A_3mathrm A_4cdotsmathrm A_1 & boldsymbol{=} n_2 times n_2 quad texttt{square matrix} tag{2-02}label{02-02} mathrm A_3mathrm A_4mathrm A_5cdotsmathrm A_2 & boldsymbol{=} n_3 times n_3 quad texttt{square matrix} tag{2-03}label{01-03} cdots & boldsymbol{=} cdotcdot: times cdotcdot: quad texttt{square matrix} tag{2-....}label{01-....} mathrm A_{rho}mathrm A_{rhoboldsymbol{+}1}mathrm A_{rhoboldsymbol{+}2}cdotsmathrm A_{rhoboldsymbol{-}1} & boldsymbol{=} n_rho times n_rho quad texttt{square matrix} tag{2-0k}label{01-0k} end{align}

Then begin{equation} texttt{Tr}left(mathrm A_1mathrm A_2mathrm A_3cdotsmathrm A_kright)boldsymbol{=}texttt{Tr}left(mathrm A_2mathrm A_3mathrm A_4cdotsmathrm A_1right)boldsymbol{=}texttt{Tr}left(mathrm A_3mathrm A_4mathrm A_5cdotsmathrm A_2right)boldsymbol{=}cdots tag{3}label{3} end{equation} Under this spirit if begin{align} mathrm A_1 & boldsymbol{equiv} langlepsi|boldsymbol{=} 1 times n boldsymbol{=} texttt{one row matrix} tag{4-01}label{04-01} mathrm A_2 & boldsymbol{equiv} A boldsymbol{=} n times n quad texttt{square matrix} tag{4-02}label{04-02} mathrm A_3 & boldsymbol{equiv} |psirangleboldsymbol{=} n times 1 boldsymbol{=} texttt{one column matrix} tag{4-03}label{04-03} end{align} then
begin{equation} texttt{Tr}left(mathrm A_1mathrm A_2mathrm A_3right)boldsymbol{=}texttt{Tr}left(mathrm A_2mathrm A_3mathrm A_1right)boldsymbol{=}texttt{Tr}left(mathrm A_3mathrm A_1mathrm A_2right) tag{5}label{5} end{equation} is translated to begin{equation} texttt{Tr}left(mathrm langlepsi|Amathrm |psirangleright)boldsymbol{=}texttt{Tr}left(Amathrm |psiranglemathrm langlepsi|right)boldsymbol{=}texttt{Tr}left(mathrm |psiranglemathrm langlepsi|Aright) tag{6}label{6} end{equation} But in any case is not permissible to write begin{equation} texttt{Tr}left(mathrm A_1mathrm A_2mathrm A_3right)boldsymbol{=}texttt{Tr}left(mathrm A_1right)texttt{Tr}left(mathrm A_2right)texttt{Tr}left(mathrm A_3right) tag{7}label{7} qquad textbf{(wrong !!!)} end{equation} as OP does in the question since on one hand the trace of non-square matrices has no sense and on the other hand this is wrong even in the case that all matrices are square.

Now, I think that a proof of the validity of the cyclic property eqref{3} for finite dimensional matrices $:rm A_rho, rho=1,2,cdots k:$ will help us to sketch a proof as an answer to the question. It's easy to realize that it's sufficient to prove eqref{3} for two matrices, say $:rm P={rm p_{ij}}:$ and $:rm Q={q_{kell}}:$ of dimensions $:ntimes m:$ and $:mtimes n:$ respectively begin{equation} texttt{Tr}left(mathrm Pmathrm Qright)boldsymbol{=}texttt{Tr}left(mathrm Qmathrm Pright) tag{8}label{8} end{equation} since for any number $:k:$ of matrices begin{equation} texttt{Tr}left(underbrace{mathrm A_1}_{rm P}underbrace{mathrm A_2mathrm A_3cdotsmathrm A_k}_{rm Q}right)boldsymbol{=}texttt{Tr}left(underbrace{mathrm A_2mathrm A_3cdotsmathrm A_k}_{rm Q}underbrace{mathrm A_1}_{rm P}right) tag{9}label{9} end{equation} The proof of eqref{8} runs as follows begin{equation} texttt{Tr}left(mathrm Pmathrm Qright)boldsymbol{=}sumlimits_{i=1}^{i=n}sumlimits_{j=1}^{j=m}mathrm p_{ij}mathrm q_{ji}boldsymbol{=}sumlimits_{j=1}^{j=m}sumlimits_{i=1}^{i=n}mathrm q_{ji}mathrm p_{ij}boldsymbol{=}texttt{Tr}left(mathrm Qmathrm Pright) tag{10}label{10} end{equation}

We sketch now a quick proof of equation eqref{6} in the special case of the 3-dimensional Hilbert space $:mathbb C^{3}$. Later on this proof will be generalized for an infinite-dimensional separable Hilbert space (with infinite countable complete orthonormal basis $:{phi_mu}$).

For the state vector $:|psirangle:$ we have begin{align} |psirangle & boldsymbol{=} z_1,phi_1boldsymbol{+}z_2,phi_2boldsymbol{+}z_3,phi_3boldsymbol{=}sumlimits_{mu=1}^{mu=3}z_mu,phi_mu,,quad z_muboldsymbol{=}langlephi_mu|psirangle in mathbb C tag{11a}label{11a} & texttt{so} quadquad |psirangle boldsymbol{=} sumlimits_{mu=1}^{mu=3}|phi_muranglelanglephi_mu|psirangle tag{11b}label{11b} langlepsi| & boldsymbol{=} overline{z_1},phi_1boldsymbol{+}overline{z_2},phi_2boldsymbol{+}overline{z_3},phi_3boldsymbol{=}sumlimits_{mu=1}^{mu=3}overline{z_mu},phi_mu,,quad overline{z_mu}boldsymbol{=}overline{langlephi_mu|psirangle}boldsymbol{=}langlepsi|phi_murangle in mathbb C tag{11c}label{11c} & texttt{so} quadquad langlepsi|boldsymbol{=} sumlimits_{mu=1}^{mu=3}langlephi_mu|langlepsi|phi_murangleboldsymbol{=}sumlimits_{mu=1}^{mu=3}langlephi_mu|overline{langlephi_mu|psirangle} tag{11d}label{11d} end{align} Formally we could consider them as one-column and one-row matrices respectively begin{equation} |psirangle boldsymbol{=} begin{bmatrix} :z_1 : vphantom{dfrac{a}{b}}: :z_2 : vphantom{dfrac{a}{b}}: :z_3 : vphantom{dfrac{a}{b}}: end{bmatrix},,qquad langlepsi| boldsymbol{=} begin{bmatrix} :overline{z_1} : & :overline{z_2} : & :overline{z_3} : vphantom{dfrac{a}{b}}: end{bmatrix} tag{12}label{12} end{equation} Consider that the operator $:A:$ is represented by the following $:3times 3:$ complex matrix begin{equation} Aboldsymbol{=} begin{bmatrix} a_{11} & a_{12} & a_{13} vphantom{dfrac{a}{b}}: a_{21} & a_{22} & a_{23} vphantom{dfrac{a}{b}}: a_{31} & a_{32} & a_{33} vphantom{dfrac{a}{b}} end{bmatrix},,quad a_{ij} in mathbb C tag{13}label{13} end{equation} Now we have begin{equation} rm P_{psi}boldsymbol{=}|psiranglelanglepsi|boldsymbol{=} begin{bmatrix} :z_1 : vphantom{dfrac{a}{b}}: :z_2 : vphantom{dfrac{a}{b}}: :z_3 : vphantom{dfrac{a}{b}}: end{bmatrix} begin{bmatrix} :overline{z_1} : & :overline{z_2} : & :overline{z_3} : vphantom{dfrac{a}{b}}: end{bmatrix}boldsymbol{=} begin{bmatrix} z_1overline{z_1} & z_1overline{z_2} & z_1overline{z_3} vphantom{dfrac{a}{b}}: z_2overline{z_1} & z_2overline{z_2} & z_2overline{z_3} vphantom{dfrac{a}{b}}: z_3overline{z_1} & z_3overline{z_2} & z_3overline{z_3} vphantom{dfrac{a}{b}}: end{bmatrix} tag{14}label{14} end{equation} We use the symbol $:rm P_{psi}:$ for the operator $:|psiranglelanglepsi|:$ because if $:|psirangle:$ is a normalized state vector,$:langlepsi|psirangleboldsymbol{=}1$, then $:rm P_{psi}:$ is the $''$projector$''$ on the direction $:|psirangle:$. The operator $:A,|psiranglelanglepsi|:$ is represented by the matrix begin{equation} A,|psiranglelanglepsi|boldsymbol{=} begin{bmatrix} a_{11} & a_{12} & a_{13} vphantom{dfrac{a}{b}}: a_{21} & a_{22} & a_{23} vphantom{dfrac{a}{b}}: a_{31} & a_{32} & a_{33} vphantom{dfrac{a}{b}} end{bmatrix}, begin{bmatrix} z_1overline{z_1} & z_1overline{z_2} & z_1overline{z_3} vphantom{dfrac{a}{b}}: z_2overline{z_1} & z_2overline{z_2} & z_2overline{z_3} vphantom{dfrac{a}{b}}: z_3overline{z_1} & z_3overline{z_2} & z_3overline{z_3} vphantom{dfrac{a}{b}}: end{bmatrix} tag{15}label{15} end{equation} that is begin{equation} A,|psiranglelanglepsi|boldsymbol{=} begin{bmatrix} begin{array}{c|c|c} a_{11}z_1overline{z_1}boldsymbol{+}a_{12}z_2overline{z_1}boldsymbol{+}a_{13}z_3overline{z_1} & cdots & cdots vphantom{dfrac{tfrac{a}{b}}{tfrac{a}{b}}} hline cdots & a_{21}z_1overline{z_2}boldsymbol{+}a_{22}z_2overline{z_2}boldsymbol{+}a_{23}z_3overline{z_2} & cdots vphantom{dfrac{tfrac{a}{b}}{tfrac{a}{b}}} hline cdots & cdots & a_{31}z_1overline{z_3}boldsymbol{+}a_{32}z_2overline{z_3}boldsymbol{+}a_{33}z_3overline{z_3} vphantom{dfrac{tfrac{a}{b}}{tfrac{a}{b}}} end{array} end{bmatrix} tag{16}label{16} end{equation} We show only the diagonal elements since we are interested for their sum begin{align} texttt{Tr}left(A|psiranglelanglepsi|right) boldsymbol{=} & hphantom{ ...}left(a_{11}z_1overline{z_1}boldsymbol{+}a_{12}z_2overline{z_1}boldsymbol{+}a_{13}z_3overline{z_1}right) nonumber & boldsymbol{+}left(a_{21}z_1overline{z_2}boldsymbol{+}a_{22}z_2overline{z_2}boldsymbol{+}a_{23}z_3overline{z_2}right) nonumber & boldsymbol{+}left(a_{31}z_1overline{z_3}boldsymbol{+}a_{32}z_2overline{z_3}boldsymbol{+}a_{33}z_3overline{z_3}right) nonumber boldsymbol{=} & hphantom{ ...,}overline{z_1}left(a_{11}z_1boldsymbol{+}a_{12}z_2boldsymbol{+}a_{13}z_3right) nonumber & boldsymbol{+}overline{z_2}left(a_{21}z_1boldsymbol{+}a_{22}z_2boldsymbol{+}a_{23}z_3right) nonumber & boldsymbol{+}overline{z_3}left(a_{31}z_1boldsymbol{+}a_{32}z_2boldsymbol{+}a_{33}z_3right) nonumber boldsymbol{=} & begin{bmatrix} :overline{z_1} : & :overline{z_2} : & :overline{z_3} : vphantom{dfrac{a}{b}}: end{bmatrix} begin{bmatrix} :a_{11}z_1boldsymbol{+}a_{12}z_2boldsymbol{+}a_{13}z_3 : vphantom{dfrac{a}{b}}: :a_{21}z_1boldsymbol{+}a_{22}z_2boldsymbol{+}a_{23}z_3 : vphantom{dfrac{a}{b}}: :a_{31}z_1boldsymbol{+}a_{32}z_2boldsymbol{+}a_{33}z_3 : vphantom{dfrac{a}{b}}: end{bmatrix} nonumber boldsymbol{=} & begin{bmatrix} :overline{z_1} : & :overline{z_2} : & :overline{z_3} : vphantom{dfrac{a}{b}}: end{bmatrix} begin{bmatrix} a_{11} & a_{12} & a_{13} vphantom{dfrac{a}{b}}: a_{21} & a_{22} & a_{23} vphantom{dfrac{a}{b}}: a_{31} & a_{32} & a_{33} vphantom{dfrac{a}{b}} end{bmatrix} begin{bmatrix} :z_1 : vphantom{dfrac{a}{b}}: :z_2 : vphantom{dfrac{a}{b}}: :z_3 : vphantom{dfrac{a}{b}}: end{bmatrix} nonumber boldsymbol{=} & :langlepsi|A|psirangle tag{17}label{17} end{align} qed.

$=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!$

Finally we run the proof for an infinite-dimensional separable Hilbert space $:mathbb H:$ with infinite countable complete orthonormal basis $:{phi_mu}:$ having in mind (or under the table) the finite case above.

First we must say that if $:mathcal O:$ is an operator on the Hilbert space $:mathbb H:$ then its trace is defined by begin{equation} texttt{Tr}left(mathcal O right) boldsymbol{equiv} langlephi_mu|mathcal O|phi_murangle , quad texttt{(Einstein summation convention)} tag{18}label{18} end{equation} The trace is well-defined : it actually depends on $:mathcal O:$ and not on the basis $:{phi_mu}:$ used. In other words it's invariant.

The states $:|psirangle:$ and $:langlepsi|:$ are expressed in the $:{phi_mu}:$ basis as follows
begin{align} |psirangle & boldsymbol{=} |phi_murangle:langlephi_mu|psirangle tag{19a}label{19a} langlepsi| & boldsymbol{=} langlephi_nu|:overline{langlephi_nu|psirangle} tag{19b}label{19b} end{align} corresponding to equations eqref{11b},eqref{11d} of the finite 3-dimensional case, while the complex numbers $:langlephi_mu|psirangle,overline{langlephi_nu|psirangle}:$ correspond to the coordinates $:z_mu,overline{z_nu}$.

So begin{equation} rm P_{psi}boldsymbol{=}|psiranglelanglepsi|boldsymbol{=} Bigl(|phi_muranglelanglephi_mu|psirangleBigr) Bigl(langlephi_nu|overline{langlephi_nu|psirangle}Bigr)quadboldsymbol{implies} nonumber end{equation} begin{equation} rm P_{psi}boldsymbol{=}|psiranglelanglepsi|boldsymbol{=} Bigl(langlephi_mupsirangle: overline{langlephi_nu|psirangle}vphantom{dfrac{a}{b}}Bigr) :|phi_muranglelanglephi_nu|boldsymbol{=} |phi_murangleBigl(langlephi_mupsirangle: overline{langlephi_nu|psirangle}vphantom{dfrac{a}{b}}Bigr) :langlephi_nu| tag{20}label{20} end{equation} Formally the operator $:rm P_{psi}:$ could be represented by a $''$square$''$ matrix of infinite but countable rows and columns as follows begin{equation} rm P_{psi}boldsymbol{=}|psiranglelanglepsi|boldsymbol{=} begin{bmatrix} begin{array}{c|c|c|c|c} langlephi_1|psirangle |overline{langlephi_1|psirangle} & langlephi_1|psirangle |overline{langlephi_2|psirangle} & boldsymbol{cdots} & langlephi_1|psirangle |overline{langlephi_nu|psirangle} & boldsymbol{cdots}vphantom{dfrac{a}{b}}: langlephi_2|psirangle |overline{langlephi_1|psirangle} & langlephi_2|psirangle |overline{langlephi_2|psirangle} & boldsymbol{cdots} & langlephi_2|psirangle |overline{langlephi_nu|psirangle} & boldsymbol{cdots}vphantom{dfrac{a}{b}}: boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} vphantom{dfrac{a}{b}}: langlephi_mu|psirangle |overline{langlephi_1|psirangle} & langlephi_mu|psirangle |overline{langlephi_2|psirangle} & boldsymbol{cdots} & langlephi_mu|psirangle |overline{langlephi_nu|psirangle} & boldsymbol{cdots}vphantom{dfrac{a}{b}}: boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} & boldsymbol{cdots} vphantom{dfrac{a}{b}}: end{array} end{bmatrix} tag{21}label{21} end{equation} corresponding to the matrix in the last to the right side of equation eqref{14} for the finite case.

From the definition of the trace, see equation eqref{18} begin{align} texttt{Tr}left(A|psiranglelanglepsi|right) boldsymbol{=} & Big<phi_nuvphantom{dfrac{a}{b}}Big| A|psiranglelanglepsi|Big|phi_nuBig>boldsymbol{=}Big<phi_nuvphantom{dfrac{a}{b}}Big| A,Big|psilanglepsi|phi_nurangleBig>boldsymbol{=}Big<phi_nuvphantom{dfrac{a}{b}}Big| A,Big| overline{langlephi_nu|psirangle}psiBig> nonumber boldsymbol{=} & Big<phi_nuoverline{langlephi_nu|psirangle}vphantom{dfrac{a}{b}}Big| A,Big| psiBig>boldsymbol{=}langlepsi|A|psirangle tag{22}label{22} end{align} QED.

$=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!=!$

begin{align} & overbrace{begin{bmatrix} boldsymbol{longleftarrow} langlephi_nu| boldsymbol{longrightarrow} vphantom{tfrac{a}{b}} end{bmatrix}boldsymbol{cdot} begin{bmatrix} boldsymbol{nwarrow} & boldsymbol{uparrow} & boldsymbol{nearrow} vphantom{dfrac{a}{b}}: boldsymbol{leftarrow} & A & boldsymbol{rightarrow} vphantom{dfrac{a}{b}}: boldsymbol{swarrow} & boldsymbol{downarrow} & boldsymbol{searrow} vphantom{dfrac{a}{b}} end{bmatrix}boldsymbol{cdot} begin{bmatrix} :boldsymbol{uparrow} : vphantom{dfrac{a}{b}}: :|psirangle : vphantom{dfrac{a}{b}}: :boldsymbol{downarrow} : vphantom{dfrac{a}{b}}: end{bmatrix}boldsymbol{cdot} underbrace{ begin{bmatrix} boldsymbol{longleftarrow} langlepsi|boldsymbol{longrightarrow} vphantom{tfrac{a}{b}} end{bmatrix}boldsymbol{cdot} begin{bmatrix} :boldsymbol{uparrow} : vphantom{dfrac{a}{b}}: :|phi_{nu}rangle : vphantom{dfrac{a}{b}}: :boldsymbol{downarrow} : vphantom{dfrac{a}{b}}: end{bmatrix}}_{texttt{scalar}boldsymbol{=}langlepsi|phi_nurangle boldsymbol{=}overline{langlephi_nu|psirangle}}}^{Big<phi_nuvphantom{dfrac{a}{b}}Big| A|psiranglelanglepsi|Big|phi_nuBig>} nonumber & tag{23}label{23} &boldsymbol{=} underbrace{underbrace{begin{bmatrix} boldsymbol{longleftarrow} langlephi_nu|,overline{langlephi_nu|psirangle}boldsymbol{longrightarrow} vphantom{tfrac{a}{b}} end{bmatrix}}_{langlepsi|} boldsymbol{cdot} begin{bmatrix} boldsymbol{nwarrow} & boldsymbol{uparrow} & boldsymbol{nearrow} vphantom{dfrac{a}{b}}: boldsymbol{leftarrow} & A & boldsymbol{rightarrow} vphantom{dfrac{a}{b}}: boldsymbol{swarrow} & boldsymbol{downarrow} & boldsymbol{searrow} vphantom{dfrac{a}{b}} end{bmatrix}boldsymbol{cdot} begin{bmatrix} :boldsymbol{uparrow} : vphantom{dfrac{a}{b}}: :|psirangle : vphantom{dfrac{a}{b}}: :boldsymbol{downarrow} : vphantom{dfrac{a}{b}}: end{bmatrix}}_{langlepsi|A|psirangle} nonumber end{align}

Answered by Frobenius on April 28, 2021

Note that $x=langlepsi|hat{A}|psirangle$ is just a number. (I dropped the subscript $a$ as it does not seem to play any role.) Therefore, tr${x}=x$. The trace of an operator $hat{O}$ is formally defined in terms of any complete orthogonal basis $|nrangle$ as $$ text{tr}{hat{O}} = sum_n langle n|hat{O}|nrangle . $$ Any complete basis can be used to resolve the identity $$ mathbf{1} = sum_n |nranglelangle n| . $$ Now we can insert the resolved identity into the expression for $x$: $$ x=sum_nlanglepsi|nranglelangle n|hat{A}|psirangle = sum_nlangle n|hat{A}|psiranglelanglepsi|nrangle = text{tr}{hat{A}|psiranglelanglepsi|} . $$ All we did was to exchange the two numbers under the summation to obtain the formal expression for the trace.

Answered by flippiefanus on April 28, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP