TransWikia.com

Heat transfer direction in fins

Physics Asked by xsr on February 26, 2021

I’m unsure of what exactly is changing the heat transfer direction in the following triangular fin:
$$
q_{x} = -kA(x)frac{mathrm{d}T(x)}{mathrm{d}x}
tag{1}
$$
$$
begin{align}
q_{x+mathrm{d}x} &= q_{x}+frac{partial q_{x}}{partial x}mathrm{d}x
&=-kA(x)frac{mathrm{d}T(x)}{mathrm{d}x} – kfrac{partial}{partial x}[A(x)frac{mathrm{d}T(x)}{mathrm{d}x}]mathrm{d}x
tag{2}
end{align}
$$
$$
mathrm{d}q_{text{conv}} = h(x)mathrm{d}S(x)[T(x) – T_{∞}]
tag{3}
$$
where all the symbols are reported below:

$q_x, q_{text{conv}}$ heat transfer rate $[mathrm{W}]$.

$h(x)$ convection heat transfer coefficient $[mathrm{W,m^{-2},K^{-1}}]$.

$k$ thermal conductivity $[mathrm{W,m^{-1},K^{-1}}]$.

$T(x)$ temperature $[mathrm{K}]$.

$T_b=T(x=0)$ base surface temperature $[mathrm{K}]$.

$T_infty$ bulk temperature $[mathrm{K}]$.

$A(x)$ cross-sectional area $[mathrm{m}^2]$.

$A_0=A(x=0)$ base area $[mathrm{m}^2]$.

$mathrm{d}S(x)$ surface area of the differential element $[mathrm{m}^2]$.

$L$ total fin length $[mathrm{m}]$.

Writing down the indefinite energy balance and assuming that $T_b>T(x)>T_{infty}$:
$$
0=q_{text{in}}-q_{text{out}}= q_{x} – (mathrm{d}q_{text{conv}} + q_{x+mathrm{d}x})
tag{4}
$$
Substitute $(1)$, $(2)$ and $(3)$ in $(4)$:
$$
begin{align}
q_{x} &= mathrm{d}q_{text{conv}} + q_{x+mathrm{d}x}[5pt]
-kA(x)frac{mathrm{d}T(x)}{mathrm{d}x} &= h(x)mathrm{d}S(x)[T(x) – T_{∞}] -kA(x)frac{mathrm{d}T(x)}{mathrm{d}x} – kfrac{partial}{partial x}[A(x)frac{mathrm{d}T(x)}{mathrm{d}x}]mathrm{d}x
0 &= h(x)mathrm{d}S(x)[T(x) – T_{∞}] – kfrac{partial}{partial x}[A(x)frac{mathrm{d}T(x)}{mathrm{d}x}]mathrm{d}x
end{align}
tag{5}
$$
introducing the adimensional lenght $X$, we obtain for every function $f(x)=f(LX)=f(X)$, including any differential relation:
$$
X overset{Delta}{=} x/Lto x=LXquadtext{therefore}quadmathrm{d}X=mathrm{d}x/Ltomathrm{d}x=Lmathrm{d}X
$$
So, four new functions are defined, where $bar h$ is the averaged convection heat transfer coefficient on $X$. In the following list, all of the uppercase roman new functions are adimensional:
$$
theta(X) overset{Delta}{=} frac{T(X) – T_{∞}}{T_{b} – T_{∞}}quad K(X) overset{Delta}{=} frac{A(X)}{A_{0}} quad p(X) overset{Delta}{=} frac{mathrm{d}S(X)}{mathrm{d}X}
$$
$$
W(X) overset{Delta}{=} frac{h(X)}{p_{0}bar h}frac{mathrm{d}S(X)}{mathrm{d}X} = frac{h(X)}{bar h}frac{p(X)}{p(0)}
$$
Then two constants are introduced (uppercase is adimensional):
$$
m = frac{bar h p(0)}{kA_0}quad M = mL
$$
Substituting into $(5)$ and rearranging we obtain the adimensional differential relation:
$$
begin{align}
h(X)frac{mathrm{d}S(X)}{mathrm{d}x}[T(X)-T_infty] &= kfrac{partial}{partial x}[A(X)frac{mathrm{d}T(X)}{mathrm{d}x}][5pt]
h(X)frac{mathrm{d}S(X)}{mathrm{d}X}theta(X) &= kfrac{mathrm{d}}{mathrm{d}X}[A(X)frac{mathrm{d}theta(X)}{Lmathrm{d}X}][5pt]
h(X)p(X)theta(X) &= frac{kA_0}{L}frac{mathrm{d}}{mathrm{d}X}[K(X)frac{mathrm{d}theta(X)}{mathrm{d}X}][5pt]
W(X)theta(X) &= frac{1}{mL}frac{mathrm{d}}{mathrm{d}X}[K(X)frac{mathrm{d}theta(X)}{mathrm{d}X}][5pt]
MW(X)theta(X) &= frac{mathrm{d}}{mathrm{d}X}[K(X)frac{mathrm{d}theta(X)}{mathrm{d}X}]
end{align}
tag{6}
$$
Now, using a rectangular profile, it’s clear that $A(X)=A_0$ and $K(X)=1$, assuming that $W(X)=1$ we obtain:

                   enter image description here
$$
Mtheta(X) = frac{mathrm{d}}{mathrm{d}X}[frac{mathrm{d}theta(X)}{mathrm{d}X}]
$$

Using a triangular profile, we have $A(X)neq A_0$ and $K(X)simeq X$, assuming that $W(X)=1$ we obtain:

                              enter image description here
$$
Mtheta(X) = frac{mathrm{d}}{mathrm{d}X}[Xfrac{mathrm{d}theta(X)}{mathrm{d}X}]
$$

I did the energy balance thinking of the heat going from left to right like it’s shown on the rectangular fin, but on the triangular fin it goes on the opposite direction.

Which is fine for what I want to do, but why exactly does this happen?

Due to the equations involved the heat will only move from a bigger to an equal or smaller area?

Which adjustments would I have to make to change the heat transfer direction and make a fin like this:

                                   enter image description here

Would such fin make any sense?

One Answer

The equation can explain $q_{x} = -kA(x)frac{dT(x)}{dx}$. When the area is decreasing in x direction, to get the same heat flux, you need higher temperature gradient. So the temperature decreases faster. And when area is increasing in x direction, the temperature gradient doesn't need to be very high. But the temperature gradient should be negative for all cases. There will be no heat flow in opposite direction. The difference with different fin shape is temperature decreasing profile along x axis.

Answered by user115350 on February 26, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP