TransWikia.com

Hamiltonian in second quantization

Physics Asked by Motionx on April 28, 2021

I’m reading Tinhkam’s Superconductivity book and I’m not able to understand how he ended up with Eq. 3.97.

He started with a Hamiltonian $H=frac{iehbar}{m} sum limits_i vec{A} nabla_i $, used the fourier transform of the vector potential $vec{A}$, i.e. $vec{A(vec{r})}=sum limits_{vec{q}} vec{aleft(vec{q}right)} e^{ivec{q}vec{r}}$ and he ended up with Eq. 3.97:

$$H=frac{-ehbar}{m} sum_{vec{k},vec{q}} vec{k} , vec{aleft(vec{q}right)} c_{vec{k}+vec{q}}^{dagger} c_{vec{k}}$$

I know that a single particle operator $ Omega_i$ in second quantization can be written in the following form:
$$sum_i Omega_i= sum_{k,k^{‘}} langle k^{‘}| Omega |k rangle , c_{k^{‘}}^{dagger}c_{k} = sum_{k,q} langle k+q| Omega |k rangle c_{k+q}^{dagger}c_{k}$$ where the summation with respect to i runs over all the particles. This is probably used here, but I don’t see from where the $vec{k}$ is coming from, how he got rid of the exponential factor and the bra and ket …

Greetings

One Answer

The sum over the single particle operator $vec{A}vec{nabla_i}$ can be written as follows

$$sum_{k,q} langle k+q| vec{A} vec{nabla} |k rangle c_{k+q}^{dagger}c_{k}.$$

Using the above equation and inserting the completeness relation into the hamilonian yields

$$H=frac{iehbar}{m} sum_{vec{k},vec{q}} sum_{r} langle k+q| rrangle langle r |sum_{k'} vec{a} ,(vec{k'}) , e^{ivec{k'}vec{r}} , vec{nabla}|k rangle c_{vec{k}+vec{q}}^{dagger} c_{vec{k}}$$

Knowing that $langle r| krangle sim e^{ivec{k}vec{r}} $, $sum_{r}e^{i(vec{k}-vec{k'})vec{r}} = delta(vec{k}-vec{k'}) $ and $-ihbar vec{nabla} = hbar vec{k}$ one obtains $$H=frac{-ehbar}{m} sum_{vec{k},vec{q}} vec{k} vec{a(vec{q})}c_{vec{k}+vec{q}}^{dagger} c_{vec{k}}$$

Correct answer by Motionx on April 28, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP