Physics Asked on January 3, 2021
Why are electromagnetic fields zero inside perfect conductors? I do not understand why we can make these assumptions in electrodynamics.
SOLUTION:
Firstly, we are going to analize the electric field.
[![Electric field inside perfect conductor][1]][1]
[1]: https://i.stack.imgur.com/5HeUE.jpg
In the first conductor we can appreciate that the total charge distribution is electrically compensated ($rho=0$). In consequence, the electric field will be completely null ($∇⋅vec{D}=rho=0$).
Later on we apply an external electric field that will distribute the charges inside the conductor almost instantaneously ($sigma=infty$). This redistribution will cause another electric field that will cancel the previously applied field.
We can conclude that the elctric field is zero unless we vary the magnetic field ($∇×vec{E}=-frac{∂vec{B}}{∂t}$). The magnetic fields are defined by the following equations:
$∇⋅vec{B}=0$
$∇×vec{H}=vec{J}+frac{∂vec{D}}{∂t}=vec{J}$ext$+sigma vec{E}+frac{∂vec{D}}{∂t}$
We know that $vec{D}=0$, so the induced current densities ($vec{J}$ind$=sigmavec{E}$) will be zero as well. In addition, we will assume that the external current densities ($vec{J}$ext) applied in the conductor are also zero. Finally we know that $frac{∂vec{D}}{∂t}=0$. So we can rewrite the Maxwell equations into the following ones:
$∇⋅vec{B}=0$
$∇×vec{H}=0$
Thanks to these equations we can conclude that the magnetic field is constant inside a perfect conductor. So the electric field will be allways zero ($∇×vec{E}=-frac{∂vec{B}}{∂t}=0$).
As we have demonstrated before, we know that there can be a constant magnetic field within a perfect conductor. This field will be non-zero as long as it has been present since before the material transitioned to an infinite conductivity state. However adding some magnetic field would be an unnecessary complication. Therefore, the $vec{B}=0$ condition is reasonable.
In principle, a perfect conductor with conductivity $sigmarightarrow infty$ can have a magnetic field in the interior, as long as the magnetic field has been present since before the material transitioned to an infinite conductivity state. Infinite conductivity implies perfect screening of any changes to the interior magnetic field (so the field is "frozen-in"), but does not forbid a steady field.
However, this question refers to the incidence of electromagnetic waves on a perfect conductor. This is a simplified model to describe light reflecting from the surface of a metal, and adding in some frozen-in magnetic field would be an unnecessary complication. Therefore, the $vec B=0$ boundary condition is reasonable.
Correct answer by J. Murray on January 3, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP