TransWikia.com

Discovering vector potential from moving field analysis

Physics Asked by Jarogniew Borkowski on December 11, 2020

First I would like to remind Lorentz transformation of length and time as a matrix:
$$ begin{pmatrix}
ct’
x’
y’
z’
end{pmatrix} = begin{pmatrix}
gamma & – frac{v}{c} gamma & 0 & 0
– frac{v}{c} gamma & gamma & 0 & 0
0 & 0 & 1 & 0
0 & 0 & 0 & 1
end{pmatrix} cdot begin{pmatrix} ct x y z end{pmatrix} $$

The Transform matrix 4×4 should be the same for all four vectors in Special Relativity.
Look at the picture below:
enter image description here
We know only scalar potential in both cases. My goal is to find vector potentials and to prove that
$$ vec{E} = – vec{nabla} phi – frac{partial vec{A}}{partial t} $$

Let me use Lorentz transformation for some imaginery four electric vector:
$$ begin{pmatrix}
lambda phi’
A_x’
A_y’
A_z’
end{pmatrix} = begin{pmatrix}
gamma & – frac{v}{c} gamma & 0 & 0
– frac{v}{c} gamma & gamma & 0 & 0
0 & 0 & 1 & 0
0 & 0 & 0 & 1
end{pmatrix} cdot begin{pmatrix} lambda phi A_x A_y A_z end{pmatrix} $$

$$ phi ‘= – frac{Q}{4 pi epsilon_0 r’} $$
and
$$ phi = – frac{1}{4 pi epsilon_0 } cdot frac{Q}{r’ – vec{r’} cdot frac{vec{v}}{c} } $$

$lambda$ is some constant for a while

It is looking even good until I begin manipulate the algebra to get $ A_x’ $
What do You think about this approach?
Maybe Am I totally wrong?
Please help

One Answer

If I understood well you are trying to deduce an expression for $boldsymbol{A}$. I'll try to give it just by a retarded-time discussion without explicity passing from Lorentz transformations. You should consider a particle with charge $q_i$ moving along a trajectory $boldsymbol{r}_i(t)$ with a velocity $dot{boldsymbol{r}}_i(tau)doteqtext{d}boldsymbol{r}_i(tau)/text{d}tau$ where $tau$ will be the retarded time, defined at the end of the argumentation. Let's start from the equations of the Lorentz gauge begin{gather*} frac{1}{mu}nablacdotboldsymbol{A} +varepsilonfrac{partialphi}{partial t}=0 nabla^2phi -muvarepsilonfrac{partial^2phi}{partial t^2} = -frac{rho}{varepsilon} nabla^2boldsymbol{A} -muvarepsilonfrac{partial^2 boldsymbol{A}}{partial t^2} = -muboldsymbol{j} end{gather*} which have solutions begin{gather*} phi(boldsymbol{r},t) = frac{1}{4piepsilon} intlimits_V frac{ rholeft(boldsymbol{r}^prime,t -displaystyle{ frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c} }right) }{ |boldsymbol{r}-boldsymbol{r}^prime| } text{d}^3{boldsymbol{r}^prime} boldsymbol{A}(boldsymbol{r},t) = frac{mu}{4pi} intlimits_V frac{ boldsymbol{j}left(boldsymbol{r}^prime,t -displaystyle{ frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c} }right) }{ |boldsymbol{r}-boldsymbol{r}^prime| } text{d}^3{boldsymbol{r}^prime} end{gather*} but you know what $rho,boldsymbol{j}$ are for a moving particle begin{gather*} rho_i(boldsymbol{r},t) = q_idelta(boldsymbol{r}-boldsymbol{r}_i(t)) boldsymbol{j}_i(boldsymbol{r},t) = q_iboldsymbol{u}_i(t)delta(boldsymbol{r}-boldsymbol{r}_i(t)) phi_i(boldsymbol{r},t) = frac{1}{4piepsilon} intlimits_V frac{q_ideltaleft(boldsymbol{r}^prime-boldsymbol{r}_ileft(t -displaystyle{frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c}}right)right) }{ |boldsymbol{r}-boldsymbol{r}^prime| } text{d}^3{boldsymbol{r}^prime} boldsymbol{A}_i(boldsymbol{r},t) = frac{mu}{4pi} intlimits_V frac{q_idot{boldsymbol{r}}_ileft(t-displaystyle{frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c}}right)deltaleft(boldsymbol{r}^prime-boldsymbol{r}_ileft(t -displaystyle{frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c}}right)right) } {|boldsymbol{r}-boldsymbol{r}^prime| } text{d}^3{boldsymbol{r}^prime} end{gather*} But you don't like very much this integral so you operate a substitution begin{gather*} t^prime doteq t -displaystyle{frac{|boldsymbol{r}-boldsymbol{r}^prime|}{c}} boldsymbol{d}_i(t) doteq boldsymbol{r}-boldsymbol{r}_i(t) end{gather*} such that the condition posed by the $delta$ becomes $boldsymbol{r}^prime=boldsymbol{r}-boldsymbol{d}_i(t^prime)$. So now you have begin{gather*} phi_i(boldsymbol{r},t) = frac{1}{4piepsilon} intlimits_V frac{q_ideltaleft(boldsymbol{r}^prime-boldsymbol{r}_i(t^prime)right)}{|boldsymbol{d}_i(t^prime)|} text{d}^3{boldsymbol{r}^prime} equiv frac{1}{4piepsilon} intlimits_{t^{primeprime}} intlimits_V frac{q_ideltaleft(boldsymbol{r}^prime-boldsymbol{r}_i(t^{primeprime})right)}{|boldsymbol{d}_i(t^{primeprime})|} delta(t^{primeprime}-t^prime) text{d}^3{boldsymbol{r}^prime}text{d}{t^{primeprime}} boldsymbol{A}_i(boldsymbol{r},t) = frac{mu}{4pi} intlimits_V frac{q_idot{boldsymbol{r}}_i(t^prime)deltaleft(boldsymbol{r}^prime-boldsymbol{r}_i(t^prime)right)}{|boldsymbol{d}_i(t^prime)|} text{d}^3{boldsymbol{r}^prime} equiv frac{mu}{4pi} intlimits_{t^{primeprime}}intlimits_V frac{q_idot{boldsymbol{r}}_i(t^{primeprime})deltaleft(boldsymbol{r}^prime-boldsymbol{r}_i(t^{primeprime})right)}{|boldsymbol{d}_i(t^{primeprime})|} delta(t^{primeprime}-t^prime) text{d}^3{boldsymbol{r}^prime}text{d}{t^{primeprime}} phi_i(boldsymbol{r},t) = frac{1}{4piepsilon} intlimits_{t^{primeprime}} frac{q_ideltaleft(t^{primeprime}-t+displaystyle{frac{|boldsymbol{r}-boldsymbol{r}_i(t^{primeprime})|}{c}}right)}{|boldsymbol{d}_i(t^{primeprime})|} text{d}{t^{primeprime}} boldsymbol{A}_i(boldsymbol{r},t) = frac{mu}{4pi} intlimits_{t^{primeprime}} frac{q_idot{boldsymbol{r}}_i(t^{primeprime})deltaleft(t^{primeprime}-t+displaystyle{frac{|boldsymbol{r}-boldsymbol{r}_i(t^{primeprime})|}{c}}right)}{|boldsymbol{d}_i(t^{primeprime})|} text{d}{t^{primeprime}} end{gather*} You see? Now the integral is on the time domain! We are near the end. Now a new variable substitution begin{equation*} t^{primeprimeprime} = t^{primeprime} -t +frac{|boldsymbol{d}_i(t^{primeprime})|}{c} Longrightarrow text{d}{t^{primeprimeprime}} = text{d}{t^{primeprime}} +frac{1}{c}frac{text{d}|boldsymbol{d}_i(t^{primeprime})|}{text{d}t^{primeprime}}text{d}{t^{primeprime}} end{equation*} but defining begin{equation*} boldsymbol{n}_i(t^{primeprime}) doteq frac{boldsymbol{d}_i(t^{primeprime})}{|boldsymbol{d}_i(t^{primeprime})|} end{equation*} You will see that begin{equation*} {text{d}|boldsymbol{d}_i(t^{primeprime})|}{text{d}t^{primeprime}}=-boldsymbol{n}_i(t^{primeprime})cdotdot{boldsymbol{r}}_i(t^{primeprime}) end{equation*} and define begin{equation*} kappa_i(t^{primeprime}) doteq 1-frac{1}{c}boldsymbol{n}_i(t^{primeprime})cdotdot{boldsymbol{r}}_i(t^{primeprime}) end{equation*} such that begin{gather*} phi_i(boldsymbol{r},t) = frac{1}{4piepsilon} intlimits_{t^{primeprimeprime}} frac{q_ideltaleft(t^{primeprimeprime}right)}{|boldsymbol{d}_i(t^{primeprime})|kappa_i(t^{primeprime})} text{d}{t^{primeprimeprime}} boldsymbol{A}_i(boldsymbol{r},t) = frac{mu}{4pi} intlimits_{t^{primeprimeprime}} frac{q_idot{boldsymbol{r}}_i(t^{primeprime})deltaleft(t^{primeprimeprime}right)}{|boldsymbol{d}_i(t^{primeprime})|kappa_i(t^{primeprime})} text{d}{t^{primeprimeprime}} end{gather*} and finally the last definition begin{gather*} tau +frac{|boldsymbol{r}-boldsymbol{r}_i(tau)|}{c} doteq t phi_i(boldsymbol{r},t) = frac{1}{4piepsilon} frac{q_i}{|boldsymbol{r}-boldsymbol{r}_i(tau)|kappa_i(tau)} boldsymbol{A}_i(boldsymbol{r},t) = frac{mu}{4pi} frac{q_idot{boldsymbol{r}}_i(tau)}{|boldsymbol{r}-boldsymbol{r}_i(tau)|kappa_i(tau)} end{gather*} That are the potential of Liénard-Wiechart. The expression of the electric field that you cited is just a consequence of Maxwell equations and so electromagnetic field can be obtained by the potentials, being careful with the gradient and the time derivative. Hope this helps

Correct answer by Rob Tan on December 11, 2020

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP