TransWikia.com

Calculating entropies from purified state

Physics Asked on May 19, 2021

I am a bit stuck with the following problem and hope you can help me.

Consider the density operator $$rho_{AB} = sum_{i=0}^{3} p_i |Phi_irangle langle Phi_i|$$ where $|Phi_irangle$ is the Bell basis.

After some intermediate steps, that are not relevant for my question, I arrive at the purification $$|Psirangle_{ABE} = sum_{=0}^{3} sqrt{p_i} |Psi_irangle_{AB} otimes |epsilon_irangle_E$$ where $|epsilon_irangle_E$ is some orthonormal basis of the environment system $E$.

That can be reexpressed as $|Psirangle_{ABE}$ can be rewritten as $$|Psirangle_{ABE} = sum_{x,y=0}^{3} |x,yrangle otimes |w_{x,y}rangle$$ with

$$|w_{0,0}rangle := sqrt{frac{p_0}{2}} |epsilon_0rangle + sqrt{frac{p_1}{2}} |epsilon_1 rangle$$

$$|w_{0,1}rangle := sqrt{frac{p_2}{2}} |epsilon_2rangle + sqrt{frac{p_3}{2}} |epsilon_3 rangle$$

$$|w_{1,0}rangle := sqrt{frac{p_2}{2}} |epsilon_2rangle – sqrt{frac{p_3}{2}} |epsilon_3 rangle$$

$$|w_{1,1}rangle := sqrt{frac{p_0}{2}} |epsilon_0rangle – sqrt{frac{p_1}{2}} |epsilon_1 rangle$$

After performing some orthonormal measurement, I obtain the state:

$$rho_{XYE} = sum_{x,y=0}^{3} |xranglelangle x| otimes |yranglelangle y|otimes sigma_E^{x,y}$$ where $sigma_E^{x,y} = |w_{x,y} rangle langle w_{x,y}|$.
I have checked my results and they should be correct up to here. I am struggling with calculating entropies related to that state.


I need to show that $$H(rho_{XE}) = 1 + b(p_0+p_1)$$ where $b$ is the binary entropy function, $$b(p) = -p log_2(p) – (1-p) log_2(1-p)$$ Therefore, I traced out system $Y$, obtaining $$rho_{XE} = sum_{x,y} |xrangle langle x| otimes sigma_E^{x,y} = begin{pmatrix}sigma_E^{0,0} + sigma_E^{0,1}&0&sigma_E^{1,0} + sigma_E^{1,1}end{pmatrix}$$

The (von Neumann) entropy reads $$H(rho_{XE}) = -Tr[rho_{XE} log_2(rho_{XE})] = Trleft[begin{pmatrix}left(sigma_E^{0,0} + sigma_E^{0,1}right) log_2left(sigma_E^{0,0} + sigma_E^{0,1}right)&0&left(sigma_E^{1,0} + sigma_E^{1,1}right) log_2left( sigma_E^{1,0} + sigma_E^{1,1}right)end{pmatrix}right]$$

The eigenvalues of $sigma_E^{0,0} + sigma_E^{0,1}$ are $$lambda = frac{1pm sqrt{1-4(sqrt{p_0p_3}+sqrt{p_1 p_2})^2}}{2}$$ and where I used $$sum_{i=0}^{3} p_i = 1$$ The eigenvalues of $sigma_E^{1,0} + sigma_E^{1,1}$ are the same. I do not see how I can obtain $H(rho_{XE}) = 1 + b(p_0+p_1)$ with these expressions for the eigenvalues. In particular, I do not see how I can get rid of $p_2$ and $p_3$, which do not occur in the claimed result.

I have similar problems with the other entropies I want to calculate. Hence, it might help to find my error here, then I hopefully find the correct expression for all the other entropies, too.

Thank you for your help!

One Answer

Perhaps it would be worth checking the eigenvalues that you obtained. For example, we can write $sigma^{00}+sigma^{01}$ in block-diagonal form in the ${|epsilon_0rangle,|epsilon_1rangle,|epsilon_2rangle,|epsilon_3rangle}$ basis: begin{aligned} frac{p_0}{2}|epsilon_0ranglelangleepsilon_0| +frac{p_1}{2}|epsilon_1ranglelangleepsilon_1| + frac{sqrt{p_0 p_1}}{2}|epsilon_0ranglelangleepsilon_1| + frac{sqrt{p_0 p_1}}{2}|epsilon_1ranglelangleepsilon_0| + frac{p_2}{2}|epsilon_2ranglelangleepsilon_2| +frac{p_3}{2}|epsilon_3ranglelangleepsilon_3| + frac{sqrt{p_2 p_3}}{2}|epsilon_2ranglelangleepsilon_3| + frac{sqrt{p_2 p_3}}{2}|epsilon_3ranglelangleepsilon_2| =left( begin{array}{cccc} frac{p_0}{2} & frac{sqrt{p_0} sqrt{p_0}}{2} & 0 & 0 frac{sqrt{p_0} sqrt{p_0}}{2} & frac{p_0}{2} & 0 & 0 0 & 0 & frac{p_0}{2} & frac{sqrt{p_0} sqrt{p_0}}{2} 0 & 0 & frac{sqrt{p_0} sqrt{p_0}}{2} & frac{p_0}{2} end{array} right).end{aligned}

Since this is block-diagonal, its eigenvalues are the same as the eigenvalues of the blocks; i.e., the noneigenvalues of $sigma^{00}+sigma^{01}$ are the same as the nonzero eigenvalues of $sigma^{00}$ and of $sigma^{01}$: $$lambdainleft(frac{p_0+p_1}{2},frac{p_2+p_3}{2},0,0right)=left(frac{p_0+p_1}{2},frac{p_0+p_1}{2},0,0right).$$ These come from solutions of equations such as $left(frac{p_0}{2}-lambdaright)left(frac{p_1}{2}-lambdaright)-frac{p_0p_1}{4}=0$.

Similarly, we can express the other element in block-diagonal form: $$sigma^{10}+sigma^{11}=left( begin{array}{cccc} frac{p_0}{2} & -frac{sqrt{p_0} sqrt{p_0}}{2} & 0 & 0 -frac{sqrt{p_0} sqrt{p_0}}{2} & frac{p_0}{2} & 0 & 0 0 & 0 & frac{p_0}{2} & -frac{sqrt{p_0} sqrt{p_0}}{2} 0 & 0 & -frac{sqrt{p_0} sqrt{p_0}}{2} & frac{p_0}{2} end{array} right),$$ which has the same eigenvalues as $sigma^{00}+sigma^{01}$.

The rest of your formulas look correct, so using these corrected eigenvalues should fix your calculation.

Answered by Quantum Mechanic on May 19, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP