Physics Asked by M.N.Raia on March 2, 2021
I tried to calculate the time-like geodesics of the Morris-Thorne Wormhole $[1]$, $[2]$, $[3]$ for redshift function $Phi(r) = 0$ and $b(r) = sqrt{r_{0} r}$. But I don’t know for sure if all the plots that I made are correct.
So, the metric is:
$$ds^2 = -e^{2Phi(r)}dt^2+Biggr{ 1-frac{b(r)}{r}Biggr}^{-1}dr^2+r^2[dtheta^2+sin^2(theta)dphi^2]tag{1}$$
And the plots are:
The various spheres are the 2-spheres due to spherical symmetry of the metric, and the central sphere is the sphere of the radius $r_{0}$, therefore is the throat.
My doubt is:
Am I seeing a particle orbiting the throat of a Morris-Thorne Wormhole? In other words is it correct to say that the particle approches from infinity, orbits the throat and returns to the same universe?
$$ * * * $$
$[1]$ LOBO.F.S.N; Exotic solutions in General Relativity,arxiv:0710.4474v1, 2007
$[2]$ LOBO.F.S.N; Wormholes, Warp Drives and Energy Conditions,Springer, Vol.189, 2017
$[3]$ VISSER.M; Lorentzian Wormholes, Springer, AIP Press, 1995
Appendix: Mathematica code:
I posted this question here as well, due to the mathamtica code.
n = Length[coords];
a = 0;
r0;
[CapitalPhi][r] = 0;
B[r] = (Sqrt[r*r0]);
tt = -(Exp[
2*[CapitalPhi][
r] ]); rr = (1)/(1 - ((B[r])/(r))); [Theta][Theta] =
r^2; [CurlyPhi][CurlyPhi] =
r^2*(Sin[[Theta]]*Sin[[Theta]]); t[CurlyPhi] = 0; metric = {{tt,
0, 0, 0}, {0, rr, 0, 0}, {0, 0, [Theta][Theta], 0}, {0, 0,
0, [CurlyPhi][CurlyPhi]}}; metric // MatrixForm
inversemetric = Simplify[Inverse[metric]]; inversemetric // MatrixForm
christoffel :=
christoffel =
Simplify[Table[
1/2*Sum[inversemetric[[i,
s]]*(D[metric[[s, j]], coords[[k]]] +
D[metric[[s, k]], coords[[j]]] [Minus]
D[metric[[j, k]], coords[[s]]]), {s, 1, n}], {i, 1, n}, {j,
1, n}, {k, 1, n}]]
listchristoffel :=
Table[If[UnsameQ[christoffel[[i, j, k]],
0], {ToString[[CapitalGamma][i, j, k]],
christoffel[[i, j, k]]}], {i, 1, n}, {j, 1, n}, {k, 1,
j}] TableForm[
Partition[DeleteCases[Flatten[listchristoffel], Null], 2],
TableSpacing -> {2, 2}]
geodesic :=
geodesic =
Simplify[Table[[Minus]Sum[
christoffel[[i, j, k]] coords[[j]]' coords[[k]]', {j, 1, n}, {k,
1, n}], {i, 1, n}]]
listgeodesic :=
Table[{"d/d[Tau]" ToString[coords[[i]]'], " =", geodesic[[i]]}, {i,
1, n}]
TableForm[listgeodesic, TableSpacing -> {2}]
max[Tau] = 750; ivs = {0, 0, 0.088}; ics = {0, 6.5, [Pi]/2,
0}; r0 = 1;
computeSoln[max[Tau]i_, ivsi_, icsi_] :=
Block[{ivs, ics, i, [Chi], tmp, soln}, ics = icsi;
ivs = Join[{[Chi]}, ivsi];
op1 = Table[coords[[i]] -> ics[[i]], {i, 0, n}];
tm = metric /. op1;
tmp = ivs.(tm.ivs); [Chi]slv = Solve[tmp == uinvar, [Chi]];
ivs[[1]] = Last[[Chi] /. [Chi]slv];
op = {Derivative[1][t] -> Derivative[1][t][[Tau]],
Derivative[1][r] -> Derivative[1][r][[Tau]],
Derivative[1][[Theta]] -> Derivative[1][[Theta]][[Tau]],
Derivative[1][[CurlyPhi]] -> Derivative[1][[CurlyPhi]][[Tau]],
t -> t[[Tau]],
r -> r[[Tau]], [Theta] -> [Theta][[Tau]], [CurlyPhi] ->
[CurlyPhi][[Tau]]};
deq = Table[
coords[[i]]''[[Tau]] == Simplify[geodesic[[i]] /. op], {i, 1,
n}]; deq =
Join[deq, Table[coords[[i]]'[0] == ivs[[i]], {i, 1, n}],
Table[coords[[i]][0] == ics[[i]], {i, 1, n}]];
soln = NDSolve[deq, coords, {[Tau], 0, max[Tau]i}]; soln]
uinvar = [Minus]1;
sphslnToCartsln[soln_] :=
Block[{xs, ys, zs},
xs = r[[Tau]] Sin[[Theta][[Tau]]] Cos[[CurlyPhi][[Tau]]] /.
soln; ys =
r[[Tau]] Sin[[Theta][[Tau]]] Sin[[CurlyPhi][[Tau]]] /. soln;
zs = r[[Tau]] Cos[[Theta][[Tau]]] /. soln; {xs, ys, zs}]
udotu[solni_, [Tau]val_] :=
Block[{x[Alpha], u[Alpha]},
x[Alpha] =
Table[coords[[i]][[Tau]] /. solni, {i, 1, n}] // Flatten;
u[Alpha] = D[x[Alpha], [Tau]];
x[Alpha] = x[Alpha] /. [Tau] -> [Tau]val;
u[Alpha] = u[Alpha] /. [Tau] -> [Tau]val;
u[Alpha].((metric /.
Table[coords[[i]] -> x[Alpha][[i]], {i, 1, n}]).u[Alpha])]
coordlist[[Tau]in_] :=
Table[ToString[coords[[i]]] <>
" = " <> {ToString[coords[[i]][[Tau]in] /. soln // First]}, {i, 1,
n}]
soln = computeSoln[max[Tau], ivs, ics];
xyzsoln = sphslnToCartsln[soln];
Join[{"Final Coordinates:"}, coordlist[max[Tau]]] // TableForm
Join[{{"", "", "", "u.u values"}},
Table[{"[Tau]=", ToString[i], "->", udotu[soln, i]}, {i, 0,
max[Tau], max[Tau]/5}]] // TableForm
{Plot[Evaluate[
Table[coords[[i]][[Tau]] /. soln, {i, 1, n}]], {[Tau], 0,
max[Tau]}, AxesLabel -> {"[Tau]", "Coordinate"},
PlotLegends -> {"t", "r", "[Theta]", "[CurlyPhi]"},
PlotRange -> {0, 30}],
Show[ParametricPlot[
Evaluate[{xyzsoln[[1]], xyzsoln[[2]]} // Flatten], {[Tau], 0,
max[Tau]}, AspectRatio -> 1, PlotStyle -> Gray],
Graphics[{Red, Circle[{0, 0}, 2]}]]}
Shape FUNCTION;
(1)/(((r)/((Sqrt[r*r0]))) - 1)
Integrate[(1)/(((r)/((Sqrt[r*r0]))) - 1), r]
max[Tau] = 2000;
ivs = {[Minus]0.08, .035, .0359};
ics = {0, 2, Pi/4, 0.2};
xyzsoln = sphslnToCartsln[computeSoln[max[Tau], ivs, ics]];
angle = ParametricPlot3D[
Evaluate[Re[xyzsoln] // Flatten], {[Tau], 0, max[Tau]},
AxesLabel -> {x, y, z}, DisplayFunction -> Identity];
sphhoriz =
SphericalPlot3D[{1, 2, 3, 4}, {[Theta], 0, Pi}, {[Phi], 0, 2*Pi},
PlotRange -> {{-10, 10}, {-10, 10}, {-30, 30}},
BoxRatios -> {1, 1, 1}, PlotTheme -> "Classic", BoxRatios -> 2,
Mesh -> None, PlotStyle -> Opacity[0.2]];
sphhoriz2 =
SphericalPlot3D[{1, 2, 3, 4}, {[Theta], 0, Pi}, {[Phi],
0, (3/2)*Pi}, PlotRange -> {{-10, 10}, {-10, 10}, {-30, 30}},
BoxRatios -> {1, 1, 1}, PlotTheme -> "Classic", BoxRatios -> 2,
Mesh -> None, PlotStyle -> Opacity[0.3]];
Show[angle, sphhoriz, DisplayFunction -> $DisplayFunction,
PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}]
Show[angle, sphhoriz2 , DisplayFunction -> $DisplayFunction,
PlotRange -> {{-10, 10}, {-10, 10}, {-10, 10}}]
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP