MathOverflow Asked by user263322 on January 1, 2021
Consider the optimization problem
$$ minlimits_{x, alpha} sum_i alpha_i f_i(x) + g(alpha). $$
I solved the above problem by alternating fixing $x$ solve for $alpha$ and vice versa. When $x$ is fixed, the corresponding optimization with variables $alpha$ is convex and has a closed form solution. When $alpha$ is fixed, the problem is non-convex and it is solved by a gradient descent algorithm (called this problem OP2).
My question is does the above alternative scheme converge (a local optimum) given than OP2 converges to a local optimum. If it is not do you know in which conditions does alternative scheme converge?
Thanks
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP