Mathematics Asked on December 18, 2021
Suppose that
$f(z) = frac{1}{(q(z))^2}$ where the function $q$ is analytic at $z_0$, $q(z_0) = 0$, and $q'(z_0)neq 0$. Show the residue is $c_{-1}=-frac{q”(z_0)}{(q'(z_0))^3}$.
First I would like to acknowledge that there is an old question on stack exchange that provides a solution to this, but seeing as it is several years old I didn’t think I could comment and ask questions on it to much avail. I do not understand the solution given at all, could someone explain it or show me a different way?
The solution from the old question (answer credit to Julian Aguirre) goes: (I’ll italicise my questions)
Assume without loss of generality that $z_0=0$. (why can we do that? How is it equivalent?)
$q(z)=q'(0)z+frac{q”(0)}{2}z^2+O(z^3)$
(Is this a Laurent Series?What does the O mean?)
$(q(z))^2=(q'(0)^2)z^2+q'(0) q”(0)z^3+O(z^4)$
(How did we get the $q'(0) q”(0)z^3+O(z^4)$?)
$frac{1}{q(z)^2}=frac{1}{(q'(0)^2)z^2}(frac{1}{1+frac{q”(0)}{q'(0)}z+O(z^2)})=frac{1}{(q'(0)^2)z^2}(1-frac{q”(0)}{q'(0)}z+O(z^2))$
How does this get us the desired result?? Is there another way to do it?
Why can we do that?
It can be done with a simple substitution: set $t=z-z_0$. Then $z=z_0iff t=0$, and the function $f(z)$ becomes the function $g(t)=dfrac 1{bigl(q(z_0+t)bigr)^2}$
Is this a Laurent series? What does the $O$ mean?
It is not a Laurent series, since it is not a series. It is just the Taylor's expansion of the Taylor series of $q(z)$ at order$2$, the remainder $r(z)$ being $O(z^3)$ in Bachmann notation (asymptotic analysis), which means that $dfrac{r(z)}{z^3}$ is bounded when $zto 0$.
How did we get the $:q'(0) q''(0)z^3+O(z^4),$?
Simply calculating the polynomial part of $bigl(q(z)bigr)^2$ and applying the rules of calculation with $O$, i.e. truncating everything with degree $ge 3$ (it becomes a part of $O(z^3)$)
How does this get us the desired result?
After factoring out $(q'(0)^2)z^2$ in the denominator, they're left with $$frac{1}{1+underbrace{frac{q''(0)}{q'(0)}z+O(z^2)}_{u}}$$ which they expand at order $1$ with the usual formula, truncating it again, at the same order as the denominator.
So they obtain begin{align} frac{1}{q(z)^2}&=frac{1}{(q'(0))^2,z^2}, frac{1}{1+cfrac{q"(0)}{q'(0)}z+O(z^2)}\& =frac{1}{(q'(0))^2 ,z^2}biggl(1-frac{q''(0)}{q'(0)}z+O(z^2)biggr) \[1ex] &=frac{1}{(q'(0)^2)},frac1{z^2}-frac{q''(0)}{(q'(0))^3},frac 1z +O(1). end{align}
Is this clearer?
Answered by Bernard on December 18, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP