Mathematics Asked by CoffeeArabica on December 5, 2021
Show that:
$$limlimits_{Nrightarrowinfty}sumlimits_{n=1}^Nfrac{1}{N+n}=intlimits_1^2 frac{dx}{x}=ln(2)$$
My attempt:
We build a Riemann sum with:
$1=x_0<x_1<…<x_{N-1}<x_N=2$
$x_n:=frac{n}{N}+1,,,,ninmathbb{N}_0$
That gives us:
$$sumlimits_{n=1}^N(x_n-x_{n-1})frac{1}{x_n}=sumlimits_{n=1}^N left(frac{n}{N}+1-left(frac{n-1}{N}+1right)right)frac{1}{frac{n}{N}+1}=sumlimits_{n=1}^N frac{1}{N}frac{N}{N+n}=sumlimits_{n=1}^Nfrac{1}{N+n}$$
We know from the definition, that:
$$limlimits_{Nrightarrowinfty}sumlimits_{n=1}^Nfrac{1}{N+n}=limlimits_{Nrightarrowinfty}sumlimits_{n=1}^N(x_n-x_{n-1})frac{1}{x_n}=intlimits_1^2 frac{dx}{x}$$
Now we show that,
$$intlimits_1^2 frac{dx}{x}=ln(2)$$
First we choose another Rieman sum with:
$1=x_0<x_1<…<x_{N-1}<x_N=2$
$x_n:=2^{frac{n}{N}},,,,ninmathbb{N}_0$
We get:
$$sumlimits_{n=1}^N(x_n-x_{n-1})frac{1}{x_n}=sumlimits_{n=1}^Nleft(2^{frac{n}{N}}-2^{frac{n-1}{N}}right)frac{1}{2^{frac{n-1}{N}}}=sumlimits_{n=1}^N 2^{frac{1}{N}}-1=Nleft(2^{frac{1}{N}}-1right)$$
Since we know that (with $x in mathbb{R})$:
$$limlimits_{xrightarrow0}frac{2^x-1}{x}=ln(2)Longrightarrow limlimits_{xrightarrow infty}x(2^{frac{1}{x}}-1)=ln(2)Longrightarrow limlimits_{Nrightarrow infty}N(2^{frac{1}{N}}-1)=ln(2)$$
We get:
$$ln(2)=limlimits_{Nrightarrow infty}N(2^{frac{1}{N}}-1)=limlimits_{Nrightarrow infty}sumlimits_{n=1}^Nleft(2^{frac{n}{N}}-2^{frac{n-1}{N}}right)frac{1}{2^{frac{n-1}{N}}}=intlimits_1^2 frac{dx}{x}=limlimits_{Nrightarrowinfty}sumlimits_{n=1}^Nfrac{1}{N+n}$$
$Box$
Hey it would be great, if someone could check my reasoning (if its correct) and give me feedback and tips 🙂
Your solution using a Riemann sum approximation to the integral $int^2_1frac{dx}{x}$ looks fine to me. Yves Daoust is much more direct. A similar method was develop here to estimate another nice integral, I hope you appreciate it.
Here is a different method similar to Claude Leibovici's solution, but using a more elementary asymptotics for the harmonic sequence $H_n=sum^n_{k=1}frac{1}{k}$.
It is known that
$$ begin{align} 0<H_n-ln(n)-gamma < frac{1}{n+1}tag{1}label{one} end{align} $$
for all $ninmathbb{N}$, where $gamma$ is a famous Euler-Mascheroni constant. The derivation of this is not difficult. It is based on a comparison between the integral $int^n_1frac{dx}{x}$ and $H_n$.
Using $eqref{one}$ with $n=2N$ and $n=N$ gives
$$ 0<H_{2N}-ln(2N)-gamma < frac{1}{2N+1}tag{2}label{two} $$
$$ begin{align} 0<H_{N}-ln(N)-gamma < frac{1}{N+1}tag{3}label{three} end{align} $$
Subtracting $eqref{three}$ from $eqref{two}$ gives $$ -frac{1}{N+1}< H_{2N}-H_N -ln(2N)+ln(N)<frac{1}{2N+1} $$
The term $ln(2N)-ln(N)=ln(2)=int^2_1 frac{dx}{x}$. Then applying the squeeze lemma you obtain $$ lim_{Nrightarrowinfty}sum^N_{n=1}frac{1}{N+n}=lim_{Nrightarrowinfty}sum^{2N}_{n=N+1}frac{1}{n}=lim_{Nrightarrowinfty}big(H_{2N}-H_Nbig)=ln 2 $$
I learned this method from this source where they use it to estimate another cool limit: $lim_{nrightarrowinfty}(H_{F_n}-H_{F_{n-1}} )$, there $F_n$ is the Fibonacci sequence.
Answered by Jean L. on December 5, 2021
Your reasoning is correct, but you make it more complicated than needed.
$$frac1Nsum_{i=1}^Nfrac1{1+dfrac nN}toint_0^1frac{dx}{1+x}=left.ln(1+x)right|_0^1.$$
Answered by user65203 on December 5, 2021
Without Rieman sums. $$S_N=sumlimits_{n=1}^Nfrac{1}{N+n}=H_{2 N}-H_N$$ Using the asymptotics of harmonic numbers $$S_N=log (2)-frac{1}{4 N}+frac{1}{16 N^2}+Oleft(frac{1}{N^4}right)$$
Answered by Claude Leibovici on December 5, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP