Mathematics Asked by yi li on December 24, 2020
Let $eta$ be the smooth function supported in $B_1(0)$.such that $inteta = 1$
Let $u$ be a smooth function defined on an open set $Vsubset Bbb{R}^n$ that is $uin C_c^infty(V)$.
Prove the following inequality holds:
$$int_{B_1(0)}eta(y)int_0^1int_V|Du(x-epsilon ty)|dxdtdyle int_V|Du(z)|dz$$
I do it as follows extend the integral domain $Vto Bbb{R^n}$ then the inequality $int_V|Du(x-epsilon ty)dxle int_mathbb{R^n}|Du(x-epsilon ty)|dx = int_V|Du(z)|dz$.Is my proof correct?If not how to do it?
$$ begin{aligned} int_{B(0,1)} eta(y) int_{0}^{1} int_{V}left|D u_{m}(x-epsilon t y)right| d x d t d y &=int_{B(0,1)} eta(y) int_{0}^{1} int_{V}left|D u_{m}(x)right| d x d t d y \ &=int_{V}left|D u_{m}(x)right| d x int_{B(0,1)} eta(y) d y int_{0}^{1} d t \ &=int_{V}left|D u_{m}(x)right| d x end{aligned} $$
Correct answer by GAUSS1860 on December 24, 2020
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP