Mathematics Asked by symmetrickittens on August 27, 2020

I have been studying Galois theory as of late and recently I came across this proof in the context of Complex Analysis which not only prove the unsolvability of the general quintic and higher degree polynomials using radicals but also using trigonometric and exponential functions.

Is there a proof in the context of Abstract Algebra/ Galois theory that is equivalent? Preferably this proof should follow the same line of reasoning as the Abel-Ruffini theorem (the version that I found on Wikipedia specifically).

Get help from others!

Recent Questions

- How can I transform graph image into a tikzpicture LaTeX code?
- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?

Recent Answers

- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Peter Machado on Why fry rice before boiling?
- Jon Church on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP