Mathematics Asked on February 4, 2021
How can be proved these statments?
$lim sup (A_n cap B_n) = lim sup (A_n) cap lim sup (B_n) $
$lim sup (A_n cup B_n) = lim sup (A_n) cup lim sup (B_n) $
My attempt:
Let $xin lim sup (A_n) cup lim sup (B_n)$, then $xin bigcap_{N=1}^infty left( bigcup_{nge N}A_nright)$ or $xin bigcap_{N=1}^infty left( bigcup_{nge N}B_nright)$. Hence, $xin bigcap_{N=1}^infty left( bigcup_{nge N} A_ncup B_n right)$. So $lim sup (A_n) cup lim sup (B_n)subseteq\lim sup (A_n cup B_n)$
It is correct?
Actually 1) is wrong.
Let $A$ and $B$ be disjoint non-empty sets, $A_n=A$ for $n$ odd , $A_n=B$ for $n$ even and $B_n=A$ for $n$ even , $B_n=B$ for $n$ odd. Then $A_ncap B_n$ is empty for each $n$ so LHS is empty. But $lim sup A_n=lim sup B_n=Acup B$. So RHS is $A cup B$.
Answered by Kavi Rama Murthy on February 4, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP