Mathematics Asked on December 24, 2020
$$ int sin(3x) cos(nx) dx to Re int sin(3x) e^{inx} dx$$
$$ sin(3x) to Im e^{i3x}$$
Hence,
$$ Re left( Im int e^{i(3+n)x} dx right) $$
Or,
$$ Re left(Im frac{e^{i(3+n)}}{i(3+n)} right) to Re left(Im frac{-ie^{i(3+n)}}{(3+n)} right)$$
Considering,
$$ Im frac{-ie^{i(3+n)}}{(3+n)} to -frac{cos(3+n)}{3+n}$$
Hence,
$$ int sin(3x) cos(nx) dx = – frac{ cos(3+n)}{3+n}$$
Now this is wrong.. why?
Btw I am using result from here
You have indeed
$$sin 3x = Im e^{i3x}$$ And therefore:
$$(sin 3x) e^{inx} = (Im e^{i3x}) e^{inx}$$ and $$Re[(sin 3x) e^{inx}] = Re[(Im e^{i3x}) e^{inx}]$$ which is not equal to $$Re[Im (e^{i(3+n)x})]$$
In general for two complex numbers
$$Im(zz^prime) neq Im(z) z^prime$$
Example
$$Im( i cdot i) = 0 neq i = Im(i) cdot i$$
Correct answer by mathcounterexamples.net on December 24, 2020
As @MarkViola noted, the problem is nothing to do with calculus, only with how you manipulate complex numbers. To wit, with $w:=exp3ix,,z:=exp inx$ you seem to argue $Im wRe z=ReIm(wz)$ (which would be $Im(wz)$, by the way). But$$w=a+ib,,z=c+id,,a,,b,,c,,dinBbb RimpliesIm wRe z=bc,,Im(wz)=ad+bc.$$The original problem can be solved without complex numbers using$$2sin3xcos nx=sin[(n+3)x]-sin[(n-3)x].$$
Answered by J.G. on December 24, 2020
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP