Mathematics Asked on November 12, 2021
I have an economic problem where it is claimed that the production of final goods is given by the following integral
$$
Y=int_{i=0}^{i=1}x_idi
$$
where $x_i$ is the production of firms in an intermediate sector. In the intermediate sector there are infinite firms producing the intermediate product $x_i$.
I will appreciate if anyone can help me to understand three things:
Thanks in advance!
From what I know about such models, $x_i$ should be considered as a continuous function of $i$: $x(i)$ that maps $[0,1]$ to $mathbb{R}$. This means that you have infinitely many firms producing some goods. The integral would be just $$Y=int_0^1 x(i)di.$$ However, I do not think that the integral $frac{partial Y}{partial x_i}$ makes sense as a variation of $x$ on a zero-measure set does not change the value of the integral.
Answered by orthxx on November 12, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP