Mathematics Asked by Identicon on November 11, 2020

Let $f_1(x)$ and $f_2(x)$ be twice differentiable functions, where $F(x)=f_1(x)+f_2(x)$ and $G(x)=f_1(x)-f_2(x)$, for all $x in mathbb{R}$, $f_1(0)=2$ and $f_2(0)=1$. If $f_1′(x)=f_2(x)$ and $f_2′(x)=f_1(x)$, for all $x in mathbb{R}$, then the number of solutions of the equation $(F(x))^2=frac{9x^4}{G(x)}$ is

I have no idea how to start. Please help.

$f_1'' = (f_1')' = (f_2)' = f_1$, which gives $f_1 = c_1e^x+c_2e^{-x}$. From here $f_1(0) = 2$ and $f_1'(0) = f_2(0) = 1$ give $c_1 = 3/2$ and $c_2 = 1/2$. Can you go on?

Correct answer by Peanut on November 11, 2020

Get help from others!

Recent Answers

- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Peter Machado on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?
- Jon Church on Why fry rice before boiling?

Recent Questions

- How can I transform graph image into a tikzpicture LaTeX code?
- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP