Mathematics Asked by DoctorK_ on February 9, 2021
I’m trying to compute the following integral:
$$int_0^{infty}frac{sqrt{x}}{1+x^4}dx$$
I’ll not write down everything I’ve done, but choosing the branch cut on the positive real axes we have that:
$$int_0^{infty}frac{sqrt{x}}{1+x^4}dx=pi i sum_{z_i}Res(f,z_i) qquad z_iin{pm sqrt{i},pmsqrt{-i}}$$
So we have to compute four residues.
My thought was changing the branch cut by putting it on the negative imaginary axes. We can do it by choosing $arg(z) in (-frac{pi}{2},frac{3pi}{2}]$. So we have that:
$$(1+i)int_0^{infty}frac{sqrt{x}}{1+x^4}dx=2pi i sum_{z_i}Res(f,z_i) qquad z_iin{e^{ifrac{pi}{4}},e^{ifrac{3pi}{4}}}$$
By doing this, we now need to compute only two residues. But I’m really finding difficulties in computing those residues: in fact I can’t obtain the result I’m expecting. Can you please show me the computation and tell me if my argument was clear and correct?
Thanks in advance.
$newcommand{bbx}[1]{,bbox[15px,border:1px groove navy]{displaystyle{#1}},} newcommand{braces}[1]{leftlbrace,{#1},rightrbrace} newcommand{bracks}[1]{leftlbrack,{#1},rightrbrack} newcommand{dd}{mathrm{d}} newcommand{ds}[1]{displaystyle{#1}} newcommand{expo}[1]{,mathrm{e}^{#1},} newcommand{ic}{mathrm{i}} newcommand{mc}[1]{mathcal{#1}} newcommand{mrm}[1]{mathrm{#1}} newcommand{on}[1]{operatorname{#1}} newcommand{pars}[1]{left(,{#1},right)} newcommand{partiald}[3][]{frac{partial^{#1} #2}{partial #3^{#1}}} newcommand{root}[2][]{,sqrt[#1]{,{#2},},} newcommand{totald}[3][]{frac{mathrm{d}^{#1} #2}{mathrm{d} #3^{#1}}} newcommand{verts}[1]{leftvert,{#1},rightvert}$ $ds{bbox[5px,#ffd]{int_{0}^{infty}{root{x} over 1 + x^{4}},dd x = {1 over 4}pisecpars{pi over 8}} = {1 over 2}piroot{1 - {root{2} over 2}} approx 0.8501: {Large ?}}$. Hereafter, I'll perform an evaluation of $ds{oint_{cal C}{root{z} over 1 + z^{4}},dd z}$ where $ds{cal C}$ is defined in each particular case for the chosen $ds{root{z}}$-branch cut.
Ramanujan's Master Theorem: begin{align} &bbox[5px,#ffd]{int_{0}^{infty} {root{x} over 1 + x^{4}}dd x} ,,,stackrel{x^{4} mapsto x}{=},,, {1 over 4}int_{0}^{infty} {x^{color{red}{3/8} - 1} over 1 + x}dd x end{align} Note that $ds{{1 over 1 + x} = sum_{k = 0}^{infty}pars{-x}^{k} = sum_{k = 0}^{infty}color{red}{Gammapars{1 + k}}{pars{-x}^{k} over k!}}$.
Then, begin{align} &bbox[5px,#ffd]{int_{0}^{infty} {root{x} over 1 + x^{4}}dd x} = {1 over 4}bracks{Gammapars{3 over 8} Gammapars{1 - {3 over 8}}} \[5mm] = & {1 over 4},{pi over sinpars{3pi/8}} = {1 over 4},pisecpars{pi over 8} \[5mm] = & bbx{{1 over 2}piroot{1 - {root{2} over 2}}} approx 0.8501 \ & end{align}
Answered by Felix Marin on February 9, 2021
Under $x^4to x$, $$int_0^{infty}frac{sqrt{x}}{1+x^4}dx=frac14int_0^inftyfrac{1}{x^{5/8}(1+x)}dx. $$ Let $$ f(z)=frac{1}{z^{5/8}(1+z)}. $$ Let $C_r, C_R$ be circles at $0$ cut from $r$ to $R$, respectively, and $C_1, C_2$ be the top and bottom parts of the segment from $r$ to $R$. Then, for big $R>0$ and small $r>0$, $$ int_{C_R}f(z)dz+int_{C_r^-}f(z)dz+int_0^{R}f(x)dx-int_0^{R}f(xe^{2pi i})dx=2pi itext{Res}(f,z=-1). $$ Clearly $$ bigg|int_{C_R}f(z)dzbigg|lefrac{1}{R^{5/8}(R-1)}2pi R=frac{2pi R^{3/8}}{R-1}, bigg|int_{C_r^-}f(z)dzbigg|lefrac{1}{r^{5/8}(1-r)}2pi r=frac{2pi r^{3/8}}{1-r} $$ and $$ int_0^{R}f(xe^{2pi i})dx=e^{-5pi i/4}int_0^infty f(x)dx, text{Re}(f,z=-1)=e^{-5pi i/8}. $$ So letting $Rtoinfty, rto 0^+$, one has $$ (1+e^{-5pi i/4})int_0^infty f(x)dx=2pi i e^{-5pi i/8} $$ or $$ int_0^infty f(x)dx=frac{2pi i e^{-5pi i/8}}{1+e^{-5pi i/4}}=frac{pi}{cos(pi/8)}. $$ Thus $$int_0^{infty}frac{sqrt{x}}{1+x^4}dx=frac14int_0^inftyfrac{1}{x^{5/8}(1+x)}dx=frac{pi}{4cos(pi/8)}. $$
Answered by xpaul on February 9, 2021
The calcus of the residues are relatevely simple when you have simple poles.
Infact, if $z_0$ is a simple pole then $f(z) = a_{-1}(z-z_{0})^{-1}+ sumlimits_{n geq 0}a_n(z-z_0)^n$
So $(z-z_{0})f(z) = (z-z_{0})^{-1}+ sumlimits_{n geq 0}a_n(z-z_0)^n$ which implies
$$text{Res}(f,z_{0}) = a_{-1} = limlimits_{z to z_0}(z-z_{0})f(z)$$
This result to be useful when we condiser $f$ of the form $frac{f}{q}$ with $p,q$ holomorphic function, $p(z_0) ne 0$ and $z_0$ a simple pole of $q$ since
$$text{Res}(f,z_{0})= a_{-1} = limlimits_{z to z_0}(z-z_{0})frac{p(z)}{q(z)} = frac{p(z_0)}{q'(z_0)}$$
In general :
For higher order poles a strategy could be : If $f$ has a pole of order $k$ in $z_0$, $g(z) = (z-z_0)^k f(k)$ extends to an holomorphic function in $z_0$ (I'm gonna call it improperly by $g$ as well)
With this setting $$f(z) = a_{-k}(z-z_0)^k + cdots + a_{-1}(z-z_0)^{-1} + sumlimits_{n geq 0}a_n(z-z_0)^n$$
$$g(z) = a_{-k} + cdots + a_{-1}(z-z_0)^{k-1} + sumlimits_{n geq 0}a_n(z-z_0)^{n+k}$$
So $a_{-1}$ is the coefficient of $(z-z_0)^{k-1}$ in the expansion of $g$ which is holomorphic. Knowing that $a_{n} = frac{f^{(n)}(z_0)}{n!}$ we have $$text{Res}(f,z_{0}) = a_{-1} = frac{g^{(k-1)}(z_0)}{(k-1)!}$$
Hope this helps with your calculations.
Answered by jacopoburelli on February 9, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP