Mathematics Asked by David Warren Katz on August 7, 2020

On page 163 in Wheeden-Zygmund, it is proved that for a nonnegative additive set function $phi$, $ overline{lim} phi(A_n) le phi(overline{lim} A_n)$ for any sequence of measurable functions $(A_n)$, where $overline{lim}$ denotes the lim sup. I know that, intuitively, volume can disappear at infinity (example below), so $phi(underline{lim} A_n) le underline{lim} phi(A_n)$ is intuitive to me. However, $ overline{lim} phi(A_n) le phi(overline{lim} A_n)$ does not make intuitive sense to me. I cannot find a problem with the proof in the text, but I also have found what may be a counterexample.

Let $A_n = [0, n] times [0, frac{1}{n}] subseteq mathbb{R}^2$, and let

begin{equation}

phi(A)=

begin{cases}

m(A) &text{ if} quad m(A) < infty \

0, & text{otherwise}

end{cases}

end{equation}

where $m$ denotes the Lebesgue measure of $mathbb{R}^2$. It follows that $phi$ is a nonegative additive set function on measure space ${(mathbb{R}^2, M)}$, where $M$ is the Lebesgue measurable sets.

Now, note that $overline{lim} phi(A_n) = 1$, since $phi(A_n) = 1$ for every $n$. However, $overline{lim}A_n = mathbb{R}$, so $phi(overline{lim}A_n) = 0$, contradicting $ overline{lim} phi(A_n) le phi(overline{lim} A_n)$.

Get help from others!

Recent Answers

- Jon Church on Why fry rice before boiling?
- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Joshua Engel on Why fry rice before boiling?
- Peter Machado on Why fry rice before boiling?

Recent Questions

- How can I transform graph image into a tikzpicture LaTeX code?
- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP