Mathematics Asked on January 3, 2022

Assume $T_n,T$ are bounded bijective linear operators $X to Y$ and $T_n to T$ pointwise. Show $T_n^{-1}to T^{-1}$ pointwise $iff$ $|T_n^{-1}|leq C$

Note: $X,Y$ are banach spaces.

My proof:

Forward direction is uniform boundedness principle. Backwards:

Let us assume that $T_n^{-1}(y)not to T^{-1}(y)$ so there is a subsequence and $y$ s.t $|T_{n_k}^{-1}(y)- T^{-1}(y)|geq epsilon$. Now we know that $T_{n_k}(x)to T(x)$ and since $T^{-1}_{n}$ are uniformly boundaed we get that $|T^{-1}_{n_k}(T_{n_k}(x)-T(x))|<C|T_{n_k}(x)-T(x)|to 0$ Now just let $x=T^{-1}(y)$ and we arrive at contradiction. Is this correct? It seems roundabout in my opinon and there is probably more direct way to do it.

You can do it directly without the contradiction. Let $yin Y$ be arbitrary. Since ${T_n}, T$ are assumed to be bijective functions, there exist $T^{-1}(y) = xin X$. We also have a sequence of vectors $T^{-1}_n(y) = x_n$. You noticed that $T^{-1}_n(T_n(x)) = x$ and $T^{-1}_n(T(x)) = T^{-1}_n(y) = x_n$. Hence $$begin{align*}|| T_n^{-1}(y) - T^{-1}(y) || = ||x_n - x || &= ||T^{-1}_n(T(x)) - T^{-1}_n(T_n(x)) ||\ &= ||T_n^{-1} (T(x) - T_n(x))||\ &leq C ||T(x) -T_n(x)||to 0 end{align*}$$ Since $T_nto T$ pointwise.

Answered by Andrew Shedlock on January 3, 2022

Get help from others!

Recent Questions

- How can I transform graph image into a tikzpicture LaTeX code?
- How Do I Get The Ifruit App Off Of Gta 5 / Grand Theft Auto 5
- Iv’e designed a space elevator using a series of lasers. do you know anybody i could submit the designs too that could manufacture the concept and put it to use
- Need help finding a book. Female OP protagonist, magic
- Why is the WWF pending games (“Your turn”) area replaced w/ a column of “Bonus & Reward”gift boxes?

Recent Answers

- Peter Machado on Why fry rice before boiling?
- Joshua Engel on Why fry rice before boiling?
- haakon.io on Why fry rice before boiling?
- Lex on Does Google Analytics track 404 page responses as valid page views?
- Jon Church on Why fry rice before boiling?

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP