Mathematics Asked by rohitt on November 12, 2020
Given the side lengths of a triangle (and not the coordinates of vertices) is there a way to find the area of a triangle using determinants?
For example, if the three side lengths are $a$, $b$, and $c$ then the area could be easily found by the Heron’s formula. $A = sqrt{s(s-a)(s-b)(s-c)}$ where $s= frac{a+b+c}{2}$
Is there a way to find the area of this triangle using determinants?
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP