Mathematics Asked by metamorphy on January 12, 2021
I’m looking for an easier proof of the identity (attributed to K.$,$F.$,$W.$,$Rohn)
$$R_n(bar{x}):=det_{1leqslant i,jleqslant n}left{frac{x_i-x_j}{x_i+x_j}right}=prod_{i<j}left(frac{x_i-x_j}{x_i+x_j}right)^2,$$
where $bar{x}:=(x_1,ldots,x_n)$ and $n$ is even (if $n$ is odd then clearly $R_n(bar{x})=0$).
This identity is used in the end of this answer of mine.
The proof I have (see my own answer below) obtains it from the formula for
$$D_n(bar{x},bar{y},bar{z}):=det_{1leqslant i,jleqslant n}left{frac{x_i+z_j}{x_i+y_j}right}$$
found by H.$,$J.$,$A.$,$Duparc; this time, $n$ is not necessarily even.
But it looks convoluted. I don’t have access to Rohn’s works – did he have simpler arguments?..
To evaluate $D_n(bar{x},bar{y},bar{z})$, we write $$frac{x_i+z_j}{x_i+y_j}=(z_j-y_j)left(frac{1}{x_i+y_j}-frac{1}{y_j-z_j}right),$$ so that $$D_n(bar{x},bar{y},bar{z})=prod_j(z_j-y_j) begin{vmatrix} 1&frac{1}{y_1-z_1}&ldots&frac{1}{y_n-z_n} \1&frac{1}{x_1+y_1}&ldots&frac{1}{x_1+y_n} \cdot&cdots&ddots&cdots \1&frac{1}{x_n+y_1}&ldots&frac{1}{x_n+y_n} end{vmatrix}.$$
Expanding the determinant along the first row, we get $$D_n(bar{x},bar{y},bar{z})=prod_j(z_j-y_j)left(C_n(bar{x},bar{y})+sum_{k=1}^{n}frac{C_n^{(k)}(bar{x},bar{y})}{y_k-z_k}right),$$ where $C_n$ is the well-known Cauchy determinant: $$C_n(bar{x},bar{y}):=det_{1leqslant i,jleqslant n}left{frac{1}{x_i+y_j}right}=frac{prod_{i<j}(x_i-x_j)(y_i-y_j)}{prod_{i,j}(x_i+y_j)},$$ and $C_n^{(k)}$ is obtained by replacing the $k$-th column of $C_n$ by a column of $color{blue}{1}$s: $$C_n^{(k)}(bar{x},bar{y})=lim_{y_ktoinfty}y_k C_n(bar{x},bar{y})=C_n(bar{x},bar{y})frac{prod_i(x_i+y_k)}{prod_{ineq k}(y_k-y_i)}.$$
Thus, we obtain Duparc's result $$D_n(bar{x},bar{y},bar{z})=C_n(bar{x},bar{y})prod_j(z_j-y_j)left(1-sum_ifrac{y_i+x_i}{y_i-z_i}prod_{jneq i}frac{y_i+x_j}{y_i-y_j}right).$$
Since $R_n(bar{x})=D_n(bar{x},bar{x},-bar{x})$, we're left to show $$sum_iprod_{jneq i}frac{x_i+x_j}{x_i-x_j}=begin{cases}0,&ntext{ is even}\1,&ntext{ is odd}end{cases}.tag{*}label{essential}$$
For this, we do partial fraction expansion of $$F(x):=prod_jfrac{x+x_j}{x-x_j}=A_0+sum_ifrac{A_i}{x-x_i},$$ with $A_0=1$ and $A_i=limlimits_{xto x_i}(x-x_i)F(x)=ldots$ resulting in $$prod_jfrac{x+x_j}{x-x_j}=1+sum_ifrac{2x_i}{x-x_i}prod_{jneq i}frac{x_i+x_j}{x_i-x_j}.$$ To obtain eqref{essential}, it just remains to put $x=0$.
Answered by metamorphy on January 12, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP