Mathematica Asked by A Day on April 10, 2021
I want to visualize to any distribution with two or three parameter
dist = ProbabilityDistribution[λ Exp[λ (1 - x)], {x, 1, Infinity}, Assumptions -> λ > 0]
data = {1.4, 5.1, 1.7, 1.6, 1.1, 3.9, 2.2, 1.3, 2., 1.5};
param = FindDistributionParameters[data, dist]
Plot[
LogLikelihood[dist, data], {λ, .1, 2},
Epilog -> {PointSize[Medium], Red,
Point[{λ, LogLikelihood[dist, data]} /. param]}
]
data = (SeedRandom[1234]; RandomVariate[
NormalDistribution[2, 1/2], 20])
(* {1.74583, 1.9647, 1.20305, 2.7683, 3.33901, 1.34158, 1.45272, 2.07147,
2.05208, 1.16345, 2.01788, 2.08509, 2.46734, 1.58657, 1.95452, 2.5167,
1.81824, 2.0943, 1.93193, 1.95803} *)
dist = NormalDistribution[m, s];
param = FindDistributionParameters[data, dist]
(* {m -> 1.97664, s -> 0.511284} *)
llf = LogLikelihood[dist, data] // Simplify
(* (-41.6851 + 39.5328 m - 10. m^2 - 18.3788 s^2 - 20. s^2 Log[s])/s^2 *)
Or manually calculating the llf
llf === (Total@Log[PDF[dist, #] & /@ data] // PowerExpand // Simplify)
(* True *)
Show[
Plot3D[llf,
{m, 1, 3}, {s, 1/4, 3/4},
AxesLabel -> (Style[#, 16, Bold] & /@
{"m", "s", "llf"}),
PlotStyle -> Opacity[0.7],
ClippingStyle -> None],
Graphics3D[{PointSize[Large], Red, Point[{m, s, llf} /. param]}]]
For a three-parameter distribution you need three plots, one each with one of the parameters fixed and plot the llf
with the other two.
Correct answer by Bob Hanlon on April 10, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP