Mathematica Asked by Rémy Galli on January 26, 2021
Here is the very desired Parametricfunction , calculated using ParametricNDSolve, from physical arguments.
From this, an interpolating function dens is settled.
E[CurlyPhi][[CurlyPhi]_?NumberQ, g_?NumberQ] = (
E^[CurlyPhi] (Gamma[g] - Gamma[g, [CurlyPhi]]))/Gamma[g];
[Phi] = ParametricNDSolveValue[{(2 Derivative[1][[CurlyPhi]][x] +
x ([CurlyPhi]^[Prime][Prime])[x]) == - 9 x /
E[CurlyPhi][[Psi]0, g] (
E^[CurlyPhi][x] (Gamma[g] - Gamma[g, [CurlyPhi][x]]))/
Gamma[g], [CurlyPhi]'[10^-10] ==
0 , [CurlyPhi][10^-10] == [Psi]0,
WhenEvent[(Re[[CurlyPhi][x]] <
0.015) [Or] (Im[[CurlyPhi][x]] != 0), end = x;
"StopIntegration"]}, [CurlyPhi], {x,
10^-10, +[Infinity]}, {[Psi]0, g}] ;
dens[[Psi]0_, g_,
x_] = (Exp[[Phi][[Psi]0, g][
x]] (Gamma[g] - Gamma[g, [Phi][[Psi]0, g][x]])/Gamma[g])/
E[CurlyPhi][[Psi]0, g];
Here is some graphic examples .
As you can see, function dens is an interpolated function on a limited domain depending on {[Psi]0,g}.
gr1=LogLogPlot[{dens[6.4,2.3,x],dens[6.4,2.5,x],
dens[6.4,2.7,x],dens[6.4,2.9,x],dens[6.4,3.2,x],dens[6.4,3.5,x]},
{x,0.1 , 25}, PlotRange -> {{0.1,25},{10^-7,2}},Frame->True,PlotStyle->{Thin,Dotted}]
Now, here is some experimental data, regularly sampled .
data = {{1.2764388088113436`,
0.9918433685990196`}, {14.040826896924779`,
1.039932674224706`}, {26.805214985038212`,
0.7668281260594487`}, {39.56960307315165`,
0.5541859444708012`}, {52.33399116126508`,
0.40558676506099095`}, {65.09837924937852`,
0.30200232836386576`}, {77.86276733749196`,
0.2286803518200177`}, {90.6271554256054`,
0.17581993710977767`}, {103.39154351371883`,
0.13702931614982772`}, {116.15593160183226`,
0.10809719547183608`}, {128.9203196899457`,
0.0861995799489013`}, {141.68470777805913`,
0.06940652880001477`}, {154.44909586617257`,
0.056374722695911164`}, {167.213483954286`,
0.04615306910946258`}, {179.97787204239944`,
0.03805754908451407`}, {192.74226013051288`,
0.031589130420006925`}, {205.5066482186263`,
0.026378950612791056`}, {218.27103630673975`,
0.022151084939091497`}, {231.03542439485318`,
0.018696856482112126`}, {243.79981248296662`,
0.015856849289144947`}, {256.56420057108005`,
0.013508143629118478`}, {269.3285886591935`,
0.011555143338079379`}, {282.0929767473069`,
0.009922907703155834`}, {294.85736483542036`,
0.008552251717773794`}, {307.6217529235338`,
0.007396109628381036`}, {320.3861410116472`,
0.006416810850135384`}, {333.15052909976066`,
0.005584021550679567`}, {345.9149171878741`,
0.004873176551416507`}, {358.67930527598753`,
0.004264275619711748`}, {371.44369336410097`,
0.0037409528409629005`}, {384.2080814522144`,
0.0032897522559864737`}, {396.97246954032784`,
0.002899560454562362`}, {409.73685762844127`,
0.002561159440875691`}, {422.5012457165547`,
0.002266872270914283`}, {435.26563380466814`,
0.0020102806981750123`}, {448.0300218927816`,
0.0017859990432204295`}, {460.794409980895`,
0.0015894922101397037`}, {473.55879806900845`,
0.001416928552876123`}, {486.3231861571219`,
0.0012650603925953878`}, {499.0875742452353`,
0.0011311265809514637`}, {511.85196233334875`,
0.0010127727218457124`}, {524.6163504214622`,
0.0009079856000884424`}, {537.3807385095756`,
0.0008150390884601866`}, {550.145126597689`,
0.0007324493663087305`}, {562.9095146858025`,
0.0006589377212352913`}, {575.673902773916`,
0.000593399549291098`}, {588.4382908620294`,
0.0005348784400515834`}, {601.2026789501427`,
0.00048254444736299946`}, {613.9670670382562`,
0.00043567581697183264`}, {626.7314551263697`,
0.00039364357823440214`}, {639.4958432144831`,
0.00035589851604184386`}, {652.2602313025965`,
0.00032196012669276217`}, {665.02461939071`,
0.0002914072321374789`}, {677.7890074788235`,
0.0002638699842663306`}, {690.5533955669368`,
0.00023902303743189799`}, {703.3177836550502`,
0.00021657970531614398`}, {716.0821717431637`,
0.00019628694926365737`}, {728.8465598312772`,
0.0001779210706381663`}, {741.6109479193906`,
0.00016128400068432687`}, {754.375336007504`,
0.00014620009863953721`}, {767.1397240956175`,
0.00013251338312130742`}, {779.904112183731`,
0.00012008513366116102`}, {792.6685002718443`,
0.00010879180910665689`}, {805.4328883599577`,
0.00009852323782573207`}, {818.1972764480712`,
0.00008918104151080834`}, {830.9616645361847`,
0.0000806772601296132`}, {843.7260526242981`,
0.00007293315039685202`}, {856.4904407124114`,
0.00006587813420309541`}, {869.2548288005249`,
0.000059448876862823234`}, {882.0192168886384`,
0.000053588477938579856`}, {894.7836049767518`,
0.000048245759849728056`}, {907.5479930648652`,
0.00004337464155447283`}, {920.3123811529787`,
0.00003893358636232371`}, {933.0767692410922`,
0.00003488511444052035`}, {945.8411573292055`,
0.00003119537186341075`}, {958.6055454173189`,
0.000027833749152678517`}, {971.3699335054324`,
0.00002477254319742247`}, {984.1343215935459`,
0.00002198665725040371`}, {996.8987096816593`,
0.000019453334390497383`}, {1009.6630977697727`,
0.000017151920438466086`}, {1022.4274858578862`,
0.000015063652827881276`}, {1035.1918739459995`,
0.000013171472377419142`}, {1047.956262034113`,
0.000011459855295047797`}, {1060.7206501222263`,
9.914663077401455`*^-6}, {1073.4850382103398`,
8.523008256244883`*^-6}, {1086.2494262984533`,
7.273134194597726`*^-6}, {1099.0138143865665`,
6.154307353064888`*^-6}, {1111.77820247468`,
5.156720636776862`*^-6}, {1124.5425905627935`,
4.27140659888836`*^-6}, {1137.306978650907`,
3.4901594211369107`*^-6}, {1150.0713667390205`,
2.8054647183498464`*^-6}, {1162.8357548271338`,
2.2104363244156315`*^-6}, {1175.6001429152473`,
1.6987593142003669`*^-6}, {1188.3645310033608`,
1.264638600973566`*^-6}, {1201.128919091474`,
9.027525236606137`*^-7}, {1213.8933071795875`,
6.082109039808523`*^-7}, {1226.657695267701`,
3.765171114260987`*^-7}, {1239.4220833558145`,
2.0353372506191004`*^-7}, {1252.186471443928`,
8.54514261744926`*^-8}, {1264.9508595320412`,
1.8760795563738883`*^-8}};
It is possible to "fit" by eye (! ) the data, by trial and error using Manipulate, adjusting [Psi]0, g, but to do this , it is necessary to divide the data’s "timebase" by a constant x0, here x0= 65.
ndata=Thread[{data[[All,1]]/65,data[[All,2]]}];
Show[gr1,
ListPlot[ndata, ScalingFunctions -> {"Log", "Log"}, Frame -> True,
PlotStyle -> {Red, PointSize[0.01]}]]
I would like to fit the data using NonlinearModelFit (or FindFit), and by this way, find the best fit for [Psi]0,g and r0.
But it doesn’t work at all : the main problem comes from the limited domain of the interpolated functions dens, in general in the range {0,40} , the data being in the range {0,1500}, so that i don’t succeed at all to introduce properly the factor x0.
Dropping some datas helps a little, but this is not good, and I get imaginary values !!( reason why i tried to use Chop….)
nlm = NonlinearModelFit[Drop[Drop[data, 7], -5],
Chop[dens[[Psi][Psi]0, gg0, x /x0]], {{[Psi][Psi]0, 6.4}, {gg0,
2.3}, {x0, 65}}, x]
Here is an example of warning : InterpolatingFunction::dmval: Input value {14.2281} lies outside the range of data in the interpolating function. Extrapolation will be used.
Any idea ??
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP