Mathematica Asked by e.g on March 8, 2021
I’m trying to solve self-consistent equations of the form
RecurrenceTable[{d[n] == NIntegrate[(d[n - 1]/Sqrt[((1/3) + (2/9) (Cos[kx] + Cos[(kx + Sqrt[3] ky)/2] + Cos[(kx - Sqrt[3] ky)/2]))^2 + d[n - 1]^2]), {kx,0,4}, {ky,0,4}], d[0] == 1}, d, {n, 1, 10}]
However the above expression, when evaluated, produces the following error:
and the output:
{NIntegrate[d[(1 + 0) - 1]/
Sqrt[(1/3 +
2/9 (Cos[kx] + Cos[(kx + Compile`$53) Compile`$56] +
Cos[(kx - Compile`$53) Compile`$56]))^2 +
d[(1 + 0) - 1]^2], {kx, 0, 4}, {ky, 0, 4}],
NIntegrate[d[(1 + 1) - 1]/
Sqrt[(1/3 +
2/9 (Cos[kx] + Cos[(kx + Compile`$53) Compile`$56] +
Cos[(kx - Compile`$53) Compile`$56]))^2 +
d[(1 + 1) - 1]^2], {kx, 0, 4}, {ky, 0, 4}]}
Any help would be greatly appreciated, thank you!
Define NIntegrate... as a numerical function:
nint[uu_?NumericQ] :=
NIntegrate[(uu/Sqrt[((1/
3) + (2/9) (Cos[kx] + Cos[(kx + Sqrt[3] ky)/2] +
Cos[(kx - Sqrt[3] ky)/2]))^2 + uu^2]),
{kx, 0, 4}, {ky, 0,4}]
RecurrenceTable[{d[n] == nint[d[n - 1]], d[0] == 1}, d,
{n, 1, 10}]
(* {15.1676, 15.9952, 15.9957, 15.9957, 15.9957,
15.9957, 15.9957, 15.9957, 15.9957, 15.9957} *)
The same as @Bill got in his comment.
Correct answer by Akku14 on March 8, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP