Mathematica Asked on December 2, 2021
I’m using the following code for calculation of reflection and transmission coefficients through square well potential:
minE = 5;
maxE = 200;
nE = 200;
energies = Subdivide[minE, maxE, nE - 1];
reflections = ConstantArray[0, nE];
transmissions = ConstantArray[0, nE];
k = Sqrt[2 energies];
Do[
solution =
NDSolve[{psi''[x] == -2 (energies[[i]] - v[x]) psi[x],
psi[xMax] == 1, psi'[xMax] == I*k[[i]]}, psi, {x, -xMax, xMax}];
max = FindMaximum[
Abs[psi[x]] /. solution, {x, -.8 xMax, -.2 xMax}][[1]];
min = FindMinimum[
Abs[psi[x]] /. solution, {x, -.8 xMax, -.2 xMax}][[1]];
reflections[[i]] = ((max - min)/(max + min))^2;,
{i, nE}]
reflFunc = ListInterpolation[reflections, {{minE, maxE}}];
transFunc = ListInterpolation[1 - reflections, {{minE, maxE}}];
Plot[{reflFunc[x], transFunc[x]}, {x, minE, maxE}]
Now, this is kind of problem where I loop over some variable (energy) with manually defined accuracy (by nE and Subdivide). There are two questions:
Is there a way to do it with functions instead of loop and lists (how to directly create function I finally get through ListInterpolation) and how to control accuracy/ "energy step"/nE in that case
If there is another more elegant way, I’d be most obliged to see it
After some reading I'm down to following code, it somehow gets everything into function, but it is surely not most elegant:
ffunc[energy_] := (
k = Sqrt[2 energy];
solution =
NDSolve[{psi''[x] == -2 (energy - v[x]) psi[x], psi[xMax] == 1,
psi'[xMax] == I*k}, psi, {x, -xMax, xMax}];
max = FindMaximum[
Abs[psi[x]] /. solution, {x, -.8 xMax, -.2 xMax}][[1]];
min = FindMinimum[
Abs[psi[x]] /. solution, {x, -.8 xMax, -.2 xMax}][[1]];
((max - min)/(max + min))^2)
v[x_] := If[x > 0 && x < 1, 50, 0];
xMax = 10;
minE = 5;
maxE = 200;
nE = 200;
energies = Subdivide[minE, maxE, nE - 1];
reflections = ffunc /@ energies;
reflFunc = ListInterpolation[reflections, {{minE, maxE}}];
transFunc = ListInterpolation[1 - reflections, {{minE, maxE}}];
ListPlot[reflections]
Anyway, this example evaluates in 9.36s which is a bit longer than original code at 9.02s. Plot with MaxRecursion->0
takes 10.86
I am aware this change does nothing functional, but at least body of Do command is in function now.
Answered by Kater Tatianow on December 2, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP