Mathematica Asked on August 11, 2021
I have a $4times4$ matrix
A=begin{pmatrix}
0.16 (cos (text{kx})+2) & 0.55 cos left(frac{text{kx}}{2}right)+(0., +0.76 i) sin left(frac{text{kx}}{2}right) & 0.55 cos left(frac{text{kx}}{2}right) & 0.55
0.55 cos left(frac{text{kx}}{2}right)-(0., +0.76 i) sin left(frac{text{kx}}{2}right) & 0.16 (cos (text{kx})+2) & 0.55 & 0.55 cos left(frac{text{kx}}{2}right)
0.55 cos left(frac{text{kx}}{2}right) & 0.55& 0.16 (cos (text{kx})+2) & 0.55 cos left(frac{text{kx}}{2}right)+(0., +0.76 i) sin left(frac{text{kx}}{2}right)
0.55 & 0.55 cos left(frac{text{kx}}{2}right) & 0.55 cos left(frac{text{kx}}{2}right)-(0., +0.76 i) sin left(frac{text{kx}}{2}right) & 0.16 (cos (text{kx})+2)
end{pmatrix}
A={{0.16*(2 + Cos[kx]), 0.55*Cos[kx/2] + (a + 0.76*I)*Sin[kx/2],
0.55*Cos[kx/2],
0.55 }, {0.55*Cos[kx/2] - (a + 0.76*I)*Sin[kx/2],
0.16*(2 + Cos[kx]), 0.55 , 0.55*Cos[kx/2]},
{0.55*Cos[kx/2], 0.55, 0.16*(2 + Cos[kx]),
0.55*Cos[kx/2] + (a + 0.76*I)*Sin[kx/2]}, {0.55 ,
0.55*Cos[kx/2],
0.55*Cos[kx/2] - (a + 0.76*I)*Sin[kx/2], 0.16*(2 + Cos[kx])}}
where $a$ and $k_x$ are real.
I would like to transform this matrix into a full $3 times 3$ matrix $F_{3times 3}(k_x,a)$ and a diagonal term $C(k_x,a)$, where $C$ is one of the eigenvalues of A, as
begin{equation}
A’=U^{-1}A U=begin{pmatrix}
F_{3 times 3} & 0_{3times 1}
0_{1 times 3} & C
end{pmatrix}.
end{equation}
where $U$ is the transforming matrix. When $U$ is a matrix with eigenvectors on its coloumns, the above transformation simply diagonalizes the full matrix and $F_{3 times 3}$ will be diagonal.
This particular $U$ is not what I am seeking, as I would like $F_{3times3}$ to be a full matrix with non-diagonal elements.
In principle, I can get this form of $A’$ using linear combinations of rows and columns. How can I perform such a transformation on A using eigenvectors of A?
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP