Mathematica Asked on June 1, 2021
This is the code I’m trying to run:
NMaximize[ {k, (a + b + c + d + e + f + g + h + i + j + k ==
1) && (b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j + 10*k ==
6) && (b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h + 64*i +
81*j + 100*k == 42)}, {a , b, c, d, e, f, g, h, i, j,
k} [Element] NonNegativeReals ]
This is the error I’m getting:
NMaximize::ivar: (a|b|c|d|e|f|g|h|i|j|k)[Element][DoubleStruckCapitalR]&&a>=0&&b>=0&&c>=0&&d>=0&&e>=0&&f>=0&&g>=0&&h>=0&&i>=0&&j>=0&&k>=0 is not a valid variable.
The syntax I’m using is NMaximize[{f,cons},x∈reg], which is suggested on the official website.
The f (function) part is just k, the "x∈reg" (region restriction) part is
{a , b, c, d, e, f, g, h, i, j,
k} [Element] NonNegativeReals
and the cons (constraints) part is
(a + b + c + d + e + f + g + h + i + j + k ==
1) && (b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j + 10*k ==
6) && (b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h + 64*i +
81*j + 100*k == 42)
So where’s the issue?
Try this
NMaximize[{k, (a + b + c + d + e + f + g + h + i + j + k ==
1) && (b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j +
10*k == 6) && (b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h +
64*i + 81*j + 100*k == 42),
## & @@ Thread[{a, b, c, d, e, f, g, h, i, j, k} >= 0]}, {a, b, c, d,
e, f, g, h, i, j, k}, Reals]
{0.266667, {a -> 0., b -> 0., c -> 0., d -> 0., e -> 0.333333,
f -> 0.4, g -> 0., h -> 0., i -> 0., j -> 0., k -> 0.266667}}
And you can directly use Maximize
, get
{4/15, {a -> 0, b -> 0, c -> 0, d -> 0, e -> 1/3, f -> 2/5, g -> 0, h -> 0, i -> 0, j -> 0, k -> 4/15}}
Correct answer by wuyudi on June 1, 2021
NonNegativeIntegers
is not a region,it is just a algebra field.
You can use
NMaximize[{k, a + b + c + d + e + f + g + h + i + j + k == 1,
b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j + 10*k == 6,
b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h + 64*i + 81*j + 100*k ==
42}, {a, b, c, d, e, f, g, h, i, j, k} ∈
ImplicitRegion[
Thread[{a, b, c, d, e, f, g, h, i, j, k} >= 0], {a, b, c, d, e, f,
g, h, i, j, k}]]
Or simpely
NMaximize[{k, a + b + c + d + e + f + g + h + i + j + k == 1,
b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j + 10*k == 6,
b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h + 64*i + 81*j + 100*k ==
42, {a, b, c, d, e, f, g, h, i, j, k} >= 0}, {a, b, c, d, e, f, g,
h, i, j, k}]
Or
NMaximize[{k, a + b + c + d + e + f + g + h + i + j + k == 1,
b + 2*c + 3*d + 4*e + 5*f + 6*g + 7*h + 8*i + 9*j + 10*k == 6,
b + 4*c + 9*d + 16*e + 25*f + 36*g + 49*h + 64*i + 81*j + 100*k ==
42, {a, b, c, d, e, f, g, h, i, j, k} ∈
NonNegativeReals}, {a, b, c, d, e, f, g, h, i, j, k}]
etc.
Answered by cvgmt on June 1, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP