TransWikia.com

Symbolic Integration with trigonometric functions

Mathematica Asked by annoying_noob on June 13, 2021

I have this trigonometric integral which takes forever to evaluate
$int dx frac{4 left(cos left(p_1 xright)-frac{sin left(p_1 xright)}{p_1 x}right) left(cos left(p_2 xright)-frac{sin left(p_2 xright)}{p_2 x}right) left(cos left(p_3 xright)-frac{sin left(p_3 xright)}{p_3 x}right) left(cos left(p_4 xright)-frac{sin left(p_4 xright)}{p_4 x}right)}{pi x^2}$

$PrePrint = TraditionalForm
Clear["Global`*"]
Format[p[n_]] := Subscript[p, n]
s[n_Integer?Positive] := Sin[p[n]*x]
c[n_Integer?Positive] := Cos[p[n]*x]

D3 = (4*p[1] p[2] p[3] p[4]/Pi)*x^2* ((c[1] - (s[1]/(x*p[1])))/(p[1]*x)) 
    ((c[2] - (s[2]/(x*p[2])))/(p[2]*x)) ((c[3] - (s[3]/(x*p[3])))/(p[3]*x))
    (c[4] - (s[4]/(x*p[4])))/(p[4]*x)

D3 = FullSimplify[D3] // Expand 

Dcc = Integrate[D3, {x, n, Infinity}, 
  Assumptions -> p[1] > 0 && p[2] > 0 && p[3] > 0 && p[4] > 0 && n [Element] Reals && n > 0 && 
p[1] [Element] Reals && p[2] [Element] Reals && p[3] [Element] Reals &&p[4] [Element] Reals]

Is there any way I can make this process faster? I want a symbolic answer so I suppose NIntegrate is not useful.

One Answer

Here's a fairly fast computation, but I will leave to others to verify its correctness (keep in mind that Integrate usually should be checked). The result in this case is quite large.

s[n_Integer?Positive] := Sin[p[n]*x]
c[n_Integer?Positive] := Cos[p[n]*x]
D3 = (4*p[1] p[2] p[3] p[4]/Pi)* x^2*((c[1] - (s[1]/(x*p[1])))/(p[1]*x)) ((c[2] - (s[2]/(x*p[2])))/(p[2]*x)) ((c[3] - (s[3]/(x*p[3])))/(p[3]*x)) (c[4] - (s[4]/(x*p[4])))/(p[4]*x);

D3 = TrigToExp[D3] // Expand;  (** N.B. **)
    

Block[{a, c, x},
  Table[
   int[c_.*Power[E, I*a_.*x]*x^-k] = 
    c*Integrate[Exp[I*a*x]/x^k, {x, n, Infinity}, 
      Assumptions -> a ∈ Reals && n > 0],
   {k, 2, 6}]
  ] // AbsoluteTiming
(*
{25.1767,
 {c (E^(I a n)/n + I a Gamma[0, -I a n]), 
  1/4 c ((2 E^(I a n) (1 + I a n))/n^2 + 
     a^2 (2 CosIntegral[a n] - I (π - 2 SinIntegral[a n]))), 
  1/12 c (-((2 E^(I a n) (-2 + a n (-I + a n)))/n^3) + 
     a^3 (π + 2 I CosIntegral[a n] - 2 SinIntegral[a n])), 
  1/48 c ((2 E^(I a n) (6 + a n (2 I + a n (-1 - I a n))))/n^4 + 
     I a^4 (π + 2 I CosIntegral[a n] - 2 SinIntegral[a n])), 
  1/240 c ((2 E^(I a n) (24 + a n (6 I + a n (-2 + a n (-I + a n)))))/
     n^5 - a^5 (π + 2 I CosIntegral[a n] - 2 SinIntegral[a n]))}}
*)

int /@ (D3 /. Power[E, z_] :> Power[E, Factor[z]]) // 
  LeafCount // AbsoluteTiming

(*  {0.040694, 29187}  *)

Answered by Michael E2 on June 13, 2021

Add your own answers!

Ask a Question

Get help from others!

© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP