Mathematica Asked on June 3, 2021
Consider the following code:
c0 := -1.24;
b := 0.125;
hh[{x_, y_}] := {x^2 + c0 - b*y, x};
hh2[{x_, y_}] := hh[hh[{x, y}]];
dhh := Transpose[{D[hh[{x, y}], x], D[hh[{x, y}], y]}];
dhh2 := Transpose[{D[hh[hh[{x, y}]], x], D[hh[hh[{x, y}]], y]}];
fixpoints = NSolve[hh[{x, y}] == {x, y}, {x, y}];
period2cycle = NSolve[hh[hh[{x, y}]] == {x, y}, {x, y}];
center = {x, y} /. fixpoints[[1]];
centerOther = {x, y} /. fixpoints[[2]];
pushvector = Eigensystem[dhh /. fixpoints[[1]]][[2,1]];
pushvectorOther = Eigensystem[dhh /. fixpoints[[2]]][[2,1]];
sink = {x, y} /. period2cycle[[1]];
pushvector2 = Eigensystem[dhh /. fixpoints[[2]]][[2,1]];
maxIter = 63;
maxXXSize = 600;
maxYYSize = 600;
smalldelta = 0.05/maxXXSize;
newfun[{{x_, y_}, n_}] := {hh[{x, y}], n + 1};
newtest[{{x_, y_}, n_}] := Abs[x] < 10000 &&
Norm[{x, y} - sink] > 0.001;
newcolorassign[{{x_, y_}, n_}] := Which[Abs[x] < 3, {0, 0, 0},
Mod[Floor[Arg[x]/2^16], 2] > 0, {0.5, 0.5, 0.5}, True,
{1, 1, 1}];
With this setup one can execute the following:
Graphics[{Raster[Table[newcolorassign[NestWhile[newfun,
{center - pushvector*smalldelta*I*(k - maxXXSize/2 +
I*(j - maxYYSize/2)), 0}, newtest, 1, maxIter]],
{k, 1, maxXXSize}, {j, 1, maxYYSize}]],
PointSize[12/maxXXSize], White,
Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}],
PointSize[4/maxXXSize], Black,
Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}]}]
In a notebook this will produce a picture but because you specify the parameters at the beginning, to avoid confusion you should start a new notebook for each parameter pair (b,c0)
. Now to get around this problem I tried to generalise the code to the following.
hh1[{x_, y_}, b_, c_] := {x^2 + c - b*y, x};
hhhh[{x_, y_}, b_, c_] := hh1[hh1[{x, y}, b, c], b, c];
dhhh[b_, c_] := Transpose[{D[hh1[{x, y}, b, c], x],
D[hh1[{x, y}, b, c], y]}];
dhhh2[b_, c_] := Transpose[{D[hhhh[{x, y}, b, c], x],
D[hhhh[{x, y}, b, c], y]}];
fixpts[b_, c_] := NSolve[hh1[{x, y}, b, c] == {x, y}, {x, y}]
per2cycle[b_, c_] := NSolve[hhhh[{x, y}, b, c] == {x, y}, {x, y}]
centre[b_, c_] := {x, y} /. fixpts[b, c][[1]];
centreOther[b_, c_] := {x, y} /. fixpts[b, c][[2]];
pushvect[b_, c_] := Eigensystem[dhhh[b, c] /.
fixpts[b, c][[1]]][[2,1]];
pushvectOther[b_, c_] :=
Eigensystem[dhhh[b, c] /. fixpts[b, c][[2]]][[2,1]];
snk[b_, c_] := {x, y} /. per2cycle[b, c][[1]];
pushvect2[b_, c_] := Eigensystem[dhhh[b, c] /.
fixpts[b, c][[2]]][[2,1]];
maxIter = 63;
maxXXSize = 600;
maxYYSize = 600;
smalldelta = 0.05/maxXXSize;
newfun[{{x_, y_}, n_}, b_, c_] := {hh1[{x, y}, b, c], n + 1};
newtest[{{x_, y_}, n_}, b_, c_] := Abs[x] < 10000 &&
Norm[{x, y} - snk[b, c]] > 0.001;
newcolorassign[{{x_, y_}, n_}] := Which[Abs[x] < 3, {0, 0, 0},
Mod[Floor[Arg[x]/2^16], 2] > 0, {0.5, 0.5, 0.5}, True,
{1, 1, 1}];
unstablepic[b_, c_] := Graphics[
{Raster[Table[newcolorassign[NestWhile[newfun[#1, b, c] & ,
{centre[b, c] - pushvect[b, c]*smalldelta*I*
(k - maxXXSize/2 + I*(j - maxYYSize/2)), 0},
newtest[#1, b, c] & , 1, maxIter]], {k, 1, maxXXSize},
{j, 1, maxYYSize}]], PointSize[12/maxXXSize], White,
Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}],
PointSize[4/maxXXSize], Black,
Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}]}];
Now unstablepic[0.125,-1.24]
produces the same output as the original code but is significantly slower. To see this more quickly, one can take maxXXSize = 60
and maxYYSize = 60
instead of 600. I’m not sure why the generalised code is taking so much longer than the original. Is there a way to make this quicker?
It looks to me like you're recalculating a lot of stuff that should be constant (unless you're doing dangerous things with global variables).
Here's a way to not do that, mostly by changing newTest
and
newtest[{{x_, y_}, n_}, b_, c_, snk_] :=
Abs[x] < 10000 && Norm[{x, y} - snk] > 0.001;
unstablePts[b_, c_] :=
With[
{
centre = centre[b, c],
pushvect = pushvect[b, c],
sink = snk[b, c]
},
Table[
NestWhile[
newfun[#1, b, c] &,
{
centre - pushvect*
smalldelta*I*(k - maxXXSize/2 + I*(j - maxYYSize/2)), 0},
newtest[#1, b, c, sink] &,
1,
maxIter
],
{k, 1, maxXXSize},
{j, 1, maxYYSize}
]
]
unstablepic[b_, c_] :=
Graphics[{
Raster[Map[newcolorassign, unstablePts[b, c], {2}]],
PointSize[12/maxXXSize], White,
Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}], PointSize[4/maxXXSize],
Black, Point[{(maxXXSize - 1)/2, (maxYYSize - 1)/2}]
}];
you can be a bit more efficient, though, and Compile
part of this, (don't worry too much about the "Formal" variables, I'm just using them in case you accidentally defined x
, y
, b
, or c
somewhere)
hh1C =
With[{code = hh1[{[FormalX], [FormalY]}, [FormalB], [FormalC]]},
Compile[{{[FormalX], _Complex}, {[FormalY], _Complex}, {[FormalB],
_Real}, {[FormalC], _Real}},
code,
CompilationTarget -> "C"
]
];
newfunC[{{x_, y_}, n_}, b_, c_] := {hh1C[x, y, b, c], n + 1};
the speed up is relatively minor, but will increase with image size
Block[{
maxIter = 63,
maxXXSize = 500,
maxYYSize = 500
},
unstablepic[0.125, -1.24];
] // AbsoluteTiming
{20.7144, Null}
Block[{
newfun = newfunC,
maxIter = 63,
maxXXSize = 500,
maxYYSize = 500
},
pic = unstablepic[0.125, -1.24];
] // AbsoluteTiming // First
18.9731
pic
Correct answer by b3m2a1 on June 3, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP