Mathematica Asked on January 4, 2021
Consider the surface
r[t_, n_: 2, a_: 1,b_: 1] := ((Abs@Cos[t]/a)^(2/n) + (Abs@Sin[t]/b)^(2/n))^(-n/2)
SphericalPlot3D[r[t, 2], {t, 0, [Pi]}, {p, 0, 2 [Pi]}, PlotRange -> {-1, 1}, AxesLabel -> StringPart["xyz", ;;], Mesh -> False, MaxRecursion -> 5]
There exists a vertical crease where the $phi=0$ edge meets $phi=2pi$. It doesn’t disappear with increased PlotPoints
or MaxRecursion
. How to smooth it out?
In light of J.M.'s comment here, using ParametricPlot3D
instead:
r[t_, n_: 2, a_: 1,b_: 1] := ((Abs@Cos[t]/a)^(2/n) + (Abs@Sin[t]/b)^(2/n))^(-n/2)
coords = CoordinateTransform["Spherical" -> "Cartesian", {r, t, p}];
ParametricPlot3D[coords /. r -> r[t, 2], {t, 0, [Pi]}, {p, 0, 2 [Pi]},
MaxRecursion -> 5, Mesh -> None, PlotRange -> {-1, 1}]
Answered by lineage on January 4, 2021
Get help from others!
Recent Questions
Recent Answers
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP