Mathematica Asked on February 13, 2021
I am curious if anybody has some experience in using the built-in Option "PenaltyFunction"
in any of the numerical optimization functions like NMinimize
.
According to the documentation the user should be able to provide NMinimize
with a custom penalty function to control the result of the minimization. The default option value is Automatic
. I tried to find some examples of how to use this Option
, but there is hardly any information available. The official documentation gives no example.
In the this Google.group post I found the following example, which is not working any more in Version 10.0.1.
NMinimize[{x + y + z, (1/20)*x + y + 5*z == 100, (x | y | z) ∈ Integers,
0 < x < 99, 0 < y < 99, 0 < z < 99}, {x, y, z},
Method -> {"SimulatedAnnealing", "SearchPoints" -> 250}, MaxIterations -> 500]
(* {55., {x -> 20, y -> 19, z -> 16}} *)
now with "PenaltyFunction"
NMinimize[{x + y + z, (1/20)*x + y + 5*z == 100, (x | y | z) ∈ Integers,
0 < x < 99, 0 < y < 99, 0 < z < 99}, {x, y, z},
Method -> {"SimulatedAnnealing", "PenaltyFunction" -> (100*(#1 - Floor[#1]) &),
"SearchPoints" -> 250}, MaxIterations -> 500]
This gives a warning of the solution not meeting the constraints and the result (which I don’t understand):
(* {22., {x -> 20, y -> 1, z -> 1}}*)
I tried also to play with the setting myself:
From the documentation I took:
NMinimize[x + y, {x, y} ∈ Disk[]]
Show[ContourPlot[x + y, {x, y} ∈ Disk[]],
Graphics[{Red, PointSize[Large], Point[{x, y} /. Last[%]]}]]
Now with some PenaltyFunction
NMinimize[x + y, {x, y} ∈ Disk[], Method -> {"NelderMead",
"PenaltyFunction" -> (Min[#, 0] &)}]
Show[ContourPlot[x + y, {x, y} ∈ Disk[]],
Graphics[{Red, PointSize[Large], Point[{x, y} /. Last[%]]}]]
or
NMinimize[x + y, {x, y} ∈ Disk[], Method -> {"NelderMead",
"PenaltyFunction" -> ((# - Round[#])^3 &)}]
Show[ContourPlot[x + y, {x, y} ∈ Disk[]],
Graphics[{Red, PointSize[Large], Point[{x, y} /. Last[%]]}]]
I can’t decide whether I am too stupid or just too lazy to figure out, what "PenaltyFunction"
actually does. Here my questions:
"PenaltyFunction"
use/accept?EDIT
I found another Little Piece of Information here:
The author states that the Default Setting for "DifferentialEvolution"
is
"PenaltyFunction"-> Function[{d,i},d*10^(4*i)]
Function applied to penalize invalid Parameter values outside constraints (d
=distance
from allowed value, i
=number of iteration)
To me it is unclear if this applies to all constraints and how this is usefull.
As noted in the OP, "PenaltyFunction"
has the form
pf[..., step]
where the first argument is constructed from the constraint.
When minimizing an objective function of the form obj[x,..]
, the actual penalty function is a scaled sum of penalties constructed from pf[]
and the constraints:
Max[1, Abs[obj[x,..]]] * ( (* the objective function scales *)
(* a sum of *)
(* 1. penalties for constraints f[x,..] == g[x,..] *)
pf[Abs[f[x,..] - g[x,..]], step] + ...
(* 2. penalties for constraints f[x,..] <= g[x,..] *)
pf[f[x,..] - g[x,..], step] (1 + Sign[f[x,..] - g[x,..]])/2
)
The penalty function is nonnegative and is zero precisely on the domain define by the constraints, unless pf[]
is zero or negative outside the domain. (Normally, pf[]
should be positive.)
We can get the actual penalty function from an internal variable Optimization`NMinimizeDump`penalty
(the current step is given by Optimization`NMinimizeDump`itr
):
myObj[x_?NumericQ, y_?NumericQ] := x + y;
myPenalty[d_?NumericQ, step_?NumericQ] := Abs[d]^step;
NMinimize[myObj[x, y], {x, y} [Element] Disk[],
Method -> {"NelderMead", "PenaltyFunction" -> myPenalty},
StepMonitor :>
Block[{x, y, Optimization`NMinimizeDump`itr = itr},
Return[Optimization`NMinimizeDump`penalty, NMinimize]]
]
(*
Max[1, Abs[myObj[x, y]]] *
myPenalty[-1 + x^2 + y^2, itr] *
(1 + Sign[-1 + x^2 + y^2])/2
*)
Both kinds of constraints:
myObj[x_?NumericQ, y_?NumericQ, z_?NumericQ] := x + y + z;
myPenalty[d_?NumericQ, step_?NumericQ] := Abs[d]^step;
NMinimize[{myObj[x, y, z], z == x^2 + y^2}, {x, y, z} [Element]
Ball[],
Method -> {"NelderMead", "PenaltyFunction" -> myPenalty},
StepMonitor :>
Block[{x, y, z, Optimization`NMinimizeDump`itr = itr},
Return[Optimization`NMinimizeDump`penalty, NMinimize]]
]
(*
Max[1, Abs[myObj[x, y, z]]] * (
myPenalty[Abs[-x^2 - y^2 + z], itr] +
myPenalty[-1 + x^2 + y^2 + z^2, itr] *
(1 + Sign[-1 + x^2 + y^2 + z^2])/2
)
*)
The default penalty function:
myObj[x_?NumericQ, y_?NumericQ] := x + y;
NMinimize[myObj[x, y], {x, y} [Element] Disk[],
StepMonitor :>
Block[{x, y, Optimization`NMinimizeDump`itr = itr},
Return[Optimization`NMinimizeDump`penalty, NMinimize]]
]
(*
Max[1, Abs[myObj[x, y]]]*
2^Floor[itr/10] (-1 + x^2 + y^2)^2 *
(1 + Sign[-1 + x^2 + y^2])/2
*)
The Google group example
Here's the actual penalty function from the Google Group example in the OP:
NMinimize[{x + y + z, (1/20)*x + y + 5*z == 100,
(x | y | z) [Element] Integers, 0 < x < 99, 0 < y < 99, 0 < z < 99},
{x, y, z},
Method -> {"SimulatedAnnealing",
"PenaltyFunction" -> (100*(#1 - Floor[#1]) &),
"SearchPoints" -> 250}, MaxIterations -> 500,
StepMonitor :> (Hold[{x, y, z}] /. Round[v_] :> v /.
Hold[v_] :> Block[v,
Block[{Optimization`NMinimizeDump`itr = itr},
Return[Optimization`NMinimizeDump`penalty, NMinimize]]])
]
(*
Max[1, Abs[Round[x] + Round[y] + Round[z]]]* (
100 (Abs[Round[x]/20 + Round[y] + 5 (-20 + Round[z])] -
Floor[Abs[Round[x]/20 + Round[y] + 5 (-20 + Round[z])]]) +
50 (-Floor[-Round[x]] - Round[x]) (1 + Sign[1 - Round[x]]) +
50 (-Floor[-Round[y]] - Round[y]) (1 + Sign[1 - Round[y]]) +
50 (-Floor[-Round[z]] - Round[z]) (1 + Sign[1 - Round[z]])
)
*)
Note the last three terms are always zero because Floor[Round[u]]
is equal to Round[u]
, when u
is a real number. What's worse is that the first term is sometimes zero when the variables do not satisfy the constraint, whenever x
is a multiple of 20
no matter what y
or z
are.
This suggests that removing Floor[#]
from the "PenaltyFunction"
should improve the performance of NMinimize
, which it happens to do:
NMinimize[{x + y + z, (1/20)*x + y + 5*z == 100,
(x | y | z) [Element] Integers, 0 < x < 99, 0 < y < 99, 0 < z < 99},
{x, y, z},
Method -> {"SimulatedAnnealing", "PenaltyFunction" -> (100*#1 &),
"SearchPoints" -> 250}, MaxIterations -> 500
]
(* {43., {x -> 20, y -> 4, z -> 19}} *)
Answered by Michael E2 on February 13, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP