Mathematica Asked on March 6, 2021
I defined a command ŠtejTakePiksleOkol, that counts the number of pixels on a square loop arround some pixel, that have similar normalized RGB.
If the square loop would go over the edge of the picture it only takes the loop bounded by the edge of the image.
ŠtejTakePiksleOkol[slikapiksli_, baarva_, [Epsilon]_, sred_,
polm_] := {
resx = Length[slikapiksli[[1]] ];
resy = Length[slikapiksli];
[CapitalDelta]naštetih = 0;
(*edges of the loop*)
levo = If[polm >= sred[[2]], 1, sred[[2]] - polm ];
desno = If[sred[[2]] + polm > resx, resx, sred[[2]] + polm ];
gor = If[polm >= sred[[1]], 1, sred[[1]] - polm];
dol = If[sred[[1]] + polm > resy, resy, sred[[1]] + polm];
(*pixels we have to check*)
kpnk = If[polm == 0,
{sred},
Flatten[
{
Table[
{dol, x},
{x, levo, desno - 1}],
Table[
{y, desno},
{y, gor + 1, dol}],
Table[
{gor, x},
{x, levo + 1, desno}],
Table[
{y, levo},
{y, gor, dol - 1}]
},
1]
];
(
{i1, i2} = #;
If[
Normalize[baarva].Normalize[slikapiksli[[i1, i2]] ] >
1 - [Epsilon],
[CapitalDelta]naštetih++;
]
) & /@ kpnk;
[CapitalDelta]naštetih
}[[1]]
Where slikapiksli is the image data, baarva is the wanted RGB, $epsilon$ is sth like the allowed difference, sred is the middle pixel and polm is the max ‘radius’ of the loop.
Now let’s make a simple image
slikakrogca = Image[
Table[
If[i1^2 + i2^2 < 100^2, {0, 1, 1}, {1, 1, 1}],
{i1, -300, 500},{i2, -700, 500}]
]
Now apply the function for radius polm=15
AbsoluteTiming[
ŠtejTakePiksleOkol[ImageData[slikakrogca], {0, 1, 1}, .001, {3, 40}, 15]
]
{0.0134907, 0}
The same for polm=16
AbsoluteTiming[
ŠtejTakePiksleOkol[ImageData[slikakrogca], {0, 1, 1}, .001, {3, 40}, 16]
]
{0.536426, 0}
And for polm=700
AbsoluteTiming[
ŠtejTakePiksleOkol[ImageData[slikakrogca], {0, 1, 1}, .001, {3, 40}, 700]
]
{0.583814, 185}
Basically it slows down horribly from 15 to 16. Why is that and how to fix it?
I made a version of your code mostly to understand it. But the timing issue seems to have disappeared as well, so I will post it. If I have time later I might try to optimize it further.
getPixels[imageData_, center_, 0] := {center}
getPixels[imageData_, center_, radius_] := Module[{
resx = Length[imageData[[1]]],
resy = Length[imageData],
columnStart,
columnEnd,
rowStart,
rowEnd
},
columnStart = If[
radius >= center[[2]],
1,
center[[2]] - radius
];
columnEnd = If[
center[[2]] + radius > resx,
resx,
center[[2]] + radius
];
rowStart = If[
radius >= center[[1]],
1,
center[[1]] - radius
];
rowEnd = If[
center[[1]] + radius > resy,
resy,
center[[1]] + radius
];
Flatten[{
Table[{rowEnd, x}, {x, columnStart, columnEnd - 1}],
Table[{y, columnEnd}, {y, rowStart + 1, rowEnd}],
Table[{rowStart, x}, {x, columnStart + 1, columnEnd}],
Table[{y, columnStart}, {y, rowStart, rowEnd - 1}]
}, 1]
]
countSimilarPixels[imageData_, rgbValue_, allowedDifference_, center_,
radius_] := Total@Boole@MapThread[
Normalize[rgbValue].Normalize[imageData[[#, #2]]] > 1 - allowedDifference &,
Transpose@getPixels[imageData, center, radius]
];
testImage = Image[Table[If[i1^2 + i2^2 < 100^2, {0, 1, 1}, {1, 1, 1}], {i1, -300, 500}, {i2, -700, 500}]];
AbsoluteTiming[countSimilarPixels[ImageData[testImage], {0, 1, 1}, .001, {3, 40}, 50]]
(* Out: {0.012622, 0} *)
I had another look at the function getPixels
and made it a bit more readable:
getPixels[imageData_, center_, 0] := {center}
getPixels[imageData_, {row_, col_}, radius_] := Module[{
nrOfColumns,
nrOfRows,
columnStart,
columnEnd,
rowStart,
rowEnd
},
{nrOfRows, nrOfColumns} = Dimensions[imageData]~Take~2;
columnStart = Max[1, col - radius];
columnEnd = Min[nrOfColumns, col + radius];
rowStart = Max[1, row - radius];
rowEnd = Min[nrOfRows, row + radius];
Join[
Table[{rowEnd, c}, {c, columnStart, columnEnd - 1}],
Table[{r, columnEnd}, {r, rowStart + 1, rowEnd}],
Table[{rowStart, c}, {c, columnStart + 1, columnEnd}],
Table[{r, columnStart}, {r, rowStart, rowEnd - 1}]
]
]
And alternative way of writing countSimilarPixels
is
countSimilarPixels[imageData_, referenceColor_, allowedDifference_, center_, radius_] := Module[
{pixels, colors, similarity},
pixels = getPixels[imageData, center, radius];
colors = Normalize /@ Extract[imageData, pixels];
similarity = colors.Normalize[referenceColor];
Total@UnitStep[similarity - (1 - allowedDifference)]
]
Correct answer by C. E. on March 6, 2021
Okay it turns out, that if i replace last (...)&/@kpnk
with Do[...,{i,Length[kpnk]}]
it works normally
Do[
If[Normalize[baarva].Normalize[
slikapiksli[[kpnk[[i, 1]], kpnk[[i, 2]] ]] ] > 1 - [Epsilon],
[CapitalDelta]naštetih++;
[CapitalDelta]vsotatakih += slikapiksli[[i1, i2]];
[CapitalDelta]vsotakord += {i1, i2};
],
{i, Length[kpnk]}];
{0.0143393, 0}
I don't know why Map
fails, but now it works
Answered by GalZoidberg on March 6, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP