Mathematica Asked by Francesco Camussoni on October 2, 2021
So I want to obtain a inverse Laplace transform from mathematica but I get this:
How can I get the solution?
Using:
$$frac{1}{sinh left(b sqrt{s}right)}=text{csch}left(b sqrt{s}right)=sum _{k=0}^{infty } 2 exp left(-(2 k+1) b sqrt{s}right)$$ then we have:
func = InverseLaplaceTransform[(2 E^(b (-1 - 2 k) Sqrt[s]) Sinh[a Sqrt[s]])/s^2, s, t]
Sum[func[[1]], {k, 0, Infinity}]
Solution only by Infinite Sum:
HoldForm[InverseLaplaceTransform[
Sinh[a Sqrt[s]]/(s^2*Sinh[b Sqrt[s]]), s, t] ==
Sum[1/(2 Sqrt[[Pi]]) (a^2 Sqrt[[Pi]] - 2 a b Sqrt[[Pi]] +
b^2 Sqrt[[Pi]] - 4 a b k Sqrt[[Pi]] + 4 b^2 k Sqrt[[Pi]] +
4 b^2 k^2 Sqrt[[Pi]] +
2 a E^(-((-a + b + 2 b k)^2/(4 t))) Sqrt[t] -
2 b E^(-((-a + b + 2 b k)^2/(4 t))) Sqrt[t] +
2 a E^(-((a + b + 2 b k)^2/(4 t))) Sqrt[t] +
2 b E^(-((a + b + 2 b k)^2/(4 t))) Sqrt[t] -
4 b E^(-((-a + b + 2 b k)^2/(4 t))) k Sqrt[t] +
4 b E^(-((a + b + 2 b k)^2/(4 t))) k Sqrt[t] +
2 Sqrt[[Pi]] t +
Sqrt[[Pi]] (a^2 - 2 a (b + 2 b k) + (b + 2 b k)^2 + 2 t) Erf[(
a - b (1 + 2 k))/(2 Sqrt[t])] -
Sqrt[[Pi]] (a^2 + 2 a (b + 2 b k) + (b + 2 b k)^2 +
2 t) Erfc[(a + b + 2 b k)/(2 Sqrt[t])]), {k, 0,
Infinity}]] // TraditionalForm
I doubt there's a closed form for the Inverse Laplace Transform
or Series
.
Answered by Mariusz Iwaniuk on October 2, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP