Mathematica Asked by Raffaele on February 13, 2021
Playing with integers I looked for a way of finding, let’s say, $4$-digits positive integers such that $a,b,a+b$ had the same digits, like $$1089 + 8019 = 9108$$
I am a newbie and I used this function
sd[a_, b_] :=
If[Mod[a, 9] != 0 || Mod[b, 9] != 0 , False,
Sort[IntegerDigits[a + b]] == Sort[IntegerDigits[a]] &&
Sort[IntegerDigits[a]] == Sort[IntegerDigits[b]]]
Then I used the function in this way
Select[Flatten[
Table[{h, k, sd[h, k]}, {h, 1000, 10000}, {k, h, 10000}], 1], #[[3]] &]
But it took ages to give the output.
Is there a way to speed up this procedure?
Thanks in advance
ClearAll[pairS]
pairS[n_] := SortBy[First] @
Apply[Join] @
KeyValueMap[Function[{k, v},
Select[k == Sort@IntegerDigits@Total@# &]@Subsets[v, {2}]]] @
GroupBy[Sort@*IntegerDigits] @
(999 + 9 Range[10^(n - 1)])
Examples:
pairS[4] // AbsoluteTiming // First
0.0445052
pairS[5] // AbsoluteTiming // First
1.19877
Multicolumn[pairS[4], 5]
Length @ pairS[5]
673
pairS[5] // Short[#, 7] &
An aside: A slower graph-based method: get the edge list of a graph where the numbers $a$ and $b$ are connected if $a$, $b$ and $a+b$ have the same integer digits.
relation = Sort[IntegerDigits @ #] == Sort[IntegerDigits @ #2] ==
Sort[IntegerDigits[# + #2]] &;
relationgraph = RelationGraph[relation, 999 + 9 Range[10^(4 - 1)]];
edges = EdgeList @ relationgraph;
List @@@ edges == pairS[4]
True
Subgraph[relationgraph, VertexList[edges],
GraphLayout -> "MultipartiteEmbedding",
GraphStyle -> "VintageDiagram", ImageSize -> Large]
Correct answer by kglr on February 13, 2021
Approach 1, more concise
Clear[search];
search[n_] :=
Join @@ Table[With[{s = Subsets[a, {2}]},
Pick[s, Boole@MemberQ[a, Total@#] & /@ s, 1]],
{a, GatherBy[Select[Range[10^(n - 1), 10^n - 1], Divisible[#, 9] &],
Sort@*IntegerDigits]}];
search[4] // Length // AbsoluteTiming
search[5] // Length // AbsoluteTiming
search[6] // Length // AbsoluteTiming
{0.0210189, 25}
{0.212638, 648}
{9.23615, 17338}
Approach 2, more efficient
Clear[cf]
cf = Compile[{{n, _Integer}, {A, _Integer, 2}},
Module[{nums, ni, nj, B = Internal`Bag[Most@{0}]},
Do[
nums = Permutations[a]. 10^Range[n - 1, 0, -1];
Do[
ni = nums[[i]];
nj = nums[[j]];
If[ni + nj > 10^n || ni < 10^(n - 1), Break[]];
Do[If[ni + nj == k, Internal`StuffBag[B, {ni, nj, k}, 1]; Break[]]
, {k, nums}]
, {i, Length@nums}, {j, i + 1, Length@nums}]
, {a, A}];
Internal`BagPart[B, All]
], CompilationTarget -> "C", RuntimeOptions -> "Speed"
];
n = 4;
AbsoluteTiming[
digits = Select[# - Range[n] & /@ Subsets[Range[9 + n], {n}], Divisible[Total@#, 9] &];
Length[ans = Partition[cf[n, digits], 3]]
]
For n=4
{0.0014472, 25}
For n=5
,
{0.0094707, 648}
For n=6
,
{0.802517, 17338}
Compare with kglr's answer
ClearAll[pairS]
pairS[n_] :=
Apply[Join]@ KeyValueMap[Function[{k, v},
Select[k == Sort@IntegerDigits@Total@# &]@Subsets[v, {2}]]]@
GroupBy[Sort@*IntegerDigits]@(10^(n - 1) - 1 + 9 Range[10^(n - 1)])
pairS[4] // Length // AbsoluteTiming
pairS[5] // Length // AbsoluteTiming
pairS[6] // Length // AbsoluteTiming
{0.0362128, 25}
{0.945485, 648}
{40.879, 17338}
Answered by chyanog on February 13, 2021
Divide the numbers from 1000 to 9999 into a few hundred sets of integers that have the same digits, for example [1234, 1243, 1324, 1342, 1423, 1432 ... ]. Then a and b must be in the same set, and a+b must be in that set as well. So you loop over the 400 or so sets S of integers, then iterate over all elements a < 5000 of the set S, iterate b over all elements of the set S with a ≤ b ≤ 9999-a, and then check if a+b is an element of S as well. Should take milliseconds.
Answered by gnasher729 on February 13, 2021
Maybe out of slope...
Since this range is kind of huge. So use Python's Api maybe a better choice?
ExternalEvaluate["Python", "[(i, j, i+j)for i in range(1000, 9999) for j in range(i, 9999-i)
if sorted(str(i)) == sorted(str(j)) == sorted(str(i+j))]"] // AbsoluteTiming
{27.2873, {{1089, 8019, 9108}, {1089, 8091, 9180}, {1269, 1692,
2961}, {1467, 6147, 7614}, {1467, 6174, 7641}, {1476, 4671,
6147}, {1503, 3510, 5013}, {1530, 3501, 5031}, {1746, 4671,
6417}, {2385, 2853, 5238}, {2439, 2493, 4932}, {2502, 2520,
5022}, {2538, 3285, 5823}, {2691, 6921, 9612}, {2853, 5382,
8235}, {3285, 5238, 8523}, {4095, 4950, 9045}, {4095, 5409,
9504}, {4392, 4932, 9324}, {4590, 4950, 9540}, {4599, 4995,
9594}, {4698, 4986, 9684}, {4797, 4977, 9774}, {4896, 4968,
9864}, {4959, 4995, 9954}}}
costs 27s
Contrast to origin code which takes 233.128s on my PC.
Answered by wuyudi on February 13, 2021
But it took ages to give the output.
It took ~170 seconds on my computer; with ParallelTable
it took ~97 seconds.
I assume two-times speed-up is not good enough, but it was very easy to get it.
Answered by Anton Antonov on February 13, 2021
Get help from others!
Recent Answers
Recent Questions
© 2024 TransWikia.com. All rights reserved. Sites we Love: PCI Database, UKBizDB, Menu Kuliner, Sharing RPP